
Master’s Degree in Mathematics
Final project

DEEP REINFORCEMENT LEARNING
AND ITS APPLICATION TO GAMES

Alberto Torrejón Valenzuela
Faculty of Mathematics

Sevilla, August 2021

Tutors:
José Luis Pino Mejías
Rafael Pino Mejías

To my brother. Keep on working, time will come.

Index

Abstract . 7

Figure index . 9

Table index . 11

1 Introduction 13
1.1 First name, Reinforcement, last name, Deep . 13
1.2 Motivation . 16
1.3 Project structure . 17

2 Introduction to Deep Learning 19
2.1 Supervised learning, bias and overfitting . 19
2.2 Deep learning approach . 22
2.3 Convolutional Neural Networks . 24

3 Introduction to Reinforcement Learning 29
3.1 Basic concepts . 29
3.2 Markov Decision Process . 31
3.3 Goals . 32
3.4 Policies and value functions . 34

3.4.1 Bellman equations . 35
3.5 Behaving optimally . 36

3.5.1 Bellman optimality equations . 37

4 Reinforcement Learning solution methods 39
4.1 Dynamic programming . 39

4.1.1 Prediction . 40
4.1.2 Control . 40
4.1.3 Efficiency of dynamic programming . 45

4.2 Monte Carlo methods . 46
4.2.1 Prediction . 46
4.2.2 Control . 48
4.2.3 Improving Monte Carlo methods . 50

4.2.3.1 On-policy methods . 50
4.2.3.2 Off-policy methods . 51

4.3 Temporal Difference Learning . 55
4.3.1 Prediction . 55
4.3.2 SARSA (on-policy control) . 56
4.3.3 Q-learning (off-policy control) . 57

4.3.3.1 Double Q-learning . 60

5 Example: Blackjack 61

3

Deep Reinforcement Learning Alberto Torrejón Valenzuela

5.1 Prediction . 63
5.2 Control . 64

6 Deep Q-Networks 67
6.1 Approximate Q-learning . 68
6.2 Stochastic gradient descent . 69
6.3 Batch learning . 71
6.4 Deep Q-Learning . 72

7 Example: Deep Q-Networks and Gridworld 75
7.1 Representing the states . 76
7.2 Building the network . 76
7.3 Results . 77

Conclusions and improvements . 81

Appendix A . 83

Appendix B . 89

References . 97

4

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Greetings

"And the child grew and became strong; he was filled with wisdom,
and the grace of God was on him". Lucas 2:40.

Thanks to mom and dad.

Thanks to my tutors Jose Luis Pino Mejías, for being always available and helpful, and to Rafael
Pino Mejías, who, despite he could not be present this year, taught me to love computational
statistics.

Alberto Torrejón Valenzuela

5

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Abstract

The following project aims is to review the main concepts of Reinforcement Learning and
combine them with the tools of Deep Learning, studying in depth the application of these
methodologies, the Deep Reinforcement Learning algorithms, that are having such an
impact today being applied to numerous fields such as autonomous driving, robot control, gaming
and many more. In order to do this, first, in chapter 1, we will give a general overview of Deep
Reinforcement Learning as a introduction, as well as which is motivation to study this topic.
Then, in chapter 2, since it will be fundamental to achieve our goal, we give a brief review of
Deep Learning. We get into details with chapter 3, where we define Reinforcement Learning
mathematically, formalizing the concepts in order to build the classic solution algorithms in
chapter 4. As an application of these techniques, the implementation of the algorithms for the
game of Blackjack is presented in chapter 5. Finally, in chapter 6, we reach our initial objective by
building the algorithm that hides behind the Deep Q-Networks and we apply it to the Gridworld
games in chapter 7. A conclusions and improvements section for the project culminates the text.

Resumen

El siguiente proyecto tiene como objetivo revisar los principales conceptos del Aprendizaje
con Refuerzo y combinarlo con las herramientas del Aprendizaje Profundo, estudiando con
detalle la aplicación de estas metodologías, Aprendizaje con Refuerzo Profundo, que están
teniendo tanto impacto en la actualidad siendo aplicados a numerosos campos como la conducción
autónoma, el control de robots, juegos y muchos más. Para ello, en primer lugar, en el capítulo 1,
situaremos al Aprendizaje con Refuerzo Profundo a modo de introducción, motivando el estudio
de este campo. Acto seguido, en el capítulo 2, ya que será fundamental para lograr nuestro
objetivo, se realiza una breve revisión del Aprendizaje Profundo. Entraremos en detalles con
el capítulo 3, donde definiremos matemáticamente que se entiende Aprendizaje con Refuerzo,
formalizando los conceptos con el fin de construir los algoritmos de solución clásicos en el capítulo
4. Como aplicación de estas técnicas, en el capítulo 5 se presenta la implementación de los
algoritmos para el juego del Blackjack. Finalmente, en el capítulo 5, alcanzaremos nuestro
objetivo inicial construyendo el algoritmo detrás de las Deep Q-Networks y lo aplicamos a los
juegos Gridworld en capítulo 7. Una sección de conclusiones y mejoras para el proyecto culmina
el texto.

7

Figure index

1.1 Popularity of the terms reinforcement learning and deep learning according to
Google Trend index of popularity . 15

1.2 Some articles of the current applications of Deep Reinforcement Learning 16

2.1 Bias vs variance . 21
2.2 Bias-variance trade off . 21
2.3 Activation functions . 22
2.4 Neural network with one hidden layer . 23
2.5 Example of filter application to the input in a CNN. 25
2.6 Example of max pooling in a CNN . 26
2.7 Architecture of a CNN . 27

3.1 Agent–environment interaction . 30
3.2 Pole balancing example . 34
3.3 Back up diagram for state value functions . 35
3.4 Back up diagram for action-state value functions 36
3.5 Recycling Robot transition probabilities and rewards 38
3.6 Recycling Robot MDP graph . 38

4.1 Convergence to optimality following general policy iteration diagram 41
4.2 Gridworld example . 43
4.3 Control diagram for Monte Carlo methods . 48
4.4 Transition diagram for SARSA . 56
4.5 Q-learning scheme using Q-tables . 58
4.6 Q-table Gridworld . 58

5.1 Example of a Blackjack hand . 62
5.2 Evaluation of the policy using First Visit Monte Carlo algorithm for prediction . 63
5.3 Optimal policy for on-policy MC . 64
5.4 Optimal policy for off-policy MC . 64
5.5 Optimal policy for SARSA . 65
5.6 Optimal policy for Q-learning . 65
5.7 Optimal policy and state-value function found by Monte Carlo ES 66

6.1 Deep Q-learning diagram . 72
6.2 Two networks diagram Deep Q-Learning . 73
6.3 Network Architecture used to play Atari games 74

7.1 Example of Gridworld . 75
7.2 Grid elements representation for Gridworld example 76
7.3 Network arquitecture for Gridworld example . 76
7.4 Loss plot for static mode and version 3 of the DQN 77
7.5 Loss plot for random mode and version 1 of the DQN 79

9

Deep Reinforcement Learning Alberto Torrejón Valenzuela

7.6 Loss plot for random mode and version 2 of the DQN 79
7.7 Loss plot for random mode and version 3 of the DQN 80

10

Table index

3.1 2-armed bandit example . 31

4.1 Gridworld Q-table . 59
4.2 Gridworld Q-table after 2 iterations . 59

5.1 Thorp’s basic strategy for Blackjack . 62

6.1 Total average reward for various learning methods when playing Atari games. . . 74

11

Only intelligence examines itself.
Jaime Luciano Balmes

1
Introduction

1.1 First name, Reinforcement, last name, Deep
You sit at night to study, turn on the lamp light and take off your slippers to make
yourself more comfortable. Before getting up again, you try to put them on, but you
can not find the slippers in the same place you thought you left them at the beginning,
the light does not illuminate enough to see where they are and also, very often, we
are too lazy to turn our body down and look for them. What would you do?

You are tired and you decide to go to the bedroom, but you only have one switch at the
beginning of the bedroom, many things in between and at the end of a long journey,
the bed. What would you do?

In the morning the alarm rings, you get up and almost automatically you go to the
bathroom to wash up, get dressed and put first gear towards a new day, known as
routine. . .

All of these issues require an intelligent response to achieve the desired goal. In the first of the
previous cases, we usually use the foot, either by tapping the ground or as a scanner, until it
hits the shoes. Bingo! In the second one, an option is to observe the path that best suits you in
advance, try to memorize it and execute it once the light is off so you do not have to return back
to the switch. In the last case, the automation of the processes saves us time and energy since
our brain does not need to rethink the solution again, routine is helpful for us.

Intelligence is what makes the human race different, it is the engine that governs life and on
which the evolution process is sustained (although evolution might be a staggered process and
even with periods of involution due to the different degrees of intelligence of people). Therefore,
it is not surprising that one of the main research goals in the world is to understand human
intelligence and replicate it. Doubt, deception, imagination or creativity, the ability to dream or
make decisions based on our own experiences, are the greatest exponents of human intelligence and
what we have always tried to understand in order to know ourselves. Psychology or philosophy
try to do it from a humanistic point of view; neuroscience, from a chemical and biological point
of view; and mathematics tries to formalize it in order to being able to replicate it.

13

Deep Reinforcement Learning Alberto Torrejón Valenzuela

The branch of mathematics in charge of this task, shared with other sciences such as physics or
engineering, is known as Artificial Intelligence. By Artificial Intelligence (AI) we understand
the intelligence carried out by machines. An ideal “smart” machine is a flexible agent who
perceives its environment and takes actions that maximize its chances of success. For example,
the first chess programs involved a series of codified rules. It was believed that AI would advance
to the human level by crafting a large enough set of explicit rules of knowledge. This is what is
known as symbolic AI, which was the object of study between the 1950s and 1980s.

The search, almost Faustian, for a general or strong AI, capable of imitating human behavior
in its image and likeness, then became the main and most ambitious objective of researchers.
Experiments then arise to find out if an AI is capable of replicating the human being, such as
the Turing Test (although widely questioned, for example by the Chinese room experiment), in
which an interrogator is asked to identify whether the entity that is interviewing is a person or a
machine through successive questions. In this way, the construction of a broad set of rules proved
to be adequate for well-defined logical problems, such as playing chess, but not for, due to the
difficulty of elaborating explicit rules regarding more complex tasks such as perceiving, reasoning
or learning. Whereupon the idea of machine learning and weak AI, capable of performing
an intellectual task with total perfection, emerged as a new approach.

There are numerous disciplines involved in AI and the classification of all these disciplines is
not yet clear mainly because AI is constantly under renovation. However, machine learning is
considered one of the main branches of this field. Depending on the way of learning, the learning
rule followed, there are mainly three different types of learning:

• Supervised learning (SL). A training set of examples is provided with the values of
the target variable and based on this training set the algorithm is generalized to respond
correctly to all possible inputs.

• Unsupervised learning (USL). The values of the target variable are not known; is the
algorithm that tries to identify similarities between the inputs.

• Reinforcement learning (RL). The algorithm is told if the answer is wrong but not how
to correct it. You have to explore and try different possibilities and learn from experience
until you figure out how to get the correct answer. We will study RL in detail in chapters
3 and 4.

When machine learning focuses on one or two layers of data representations it is called
superficial learning. In deep learning (DL), the referred representations in layers are almost
always achieved through models called Artificial Neuronal Networks, combining some layers
of neurons on top of others. DL can then be defined either as a more advanced and efficient
approach to learning or as a tool that can be used in combination with other learning algorithms
to boost the learning process. Is the second of these two the one we will explore along this
project. We formally introduce DL in chapter 2.

Neither reinforcement learning nor deep learning algorithms are new. The basis of RL have
their origin in the Control Theory proposed by Richard Bellman and others in the mid-1950s
through extending a nineteenth century theory of Hamilton and Jacobi (see [1]). On the other
hand, some sources point out that Frank Rosenblatt developed and explored all of the basic
ingredients of the deep learning systems of today in his book Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms [2] in the 1960s (see [3]). Is the combination of
both methodologies, Deep Reinforcement Learning (DRL), the novelest and which arises
important breakthroughs in the present.

14

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 1.1: Popularity of the terms reinforcement learning and deep learning according to Google
Trend index of popularity

In the Figure 1.1, one can advert that these two concepts has grown in popularity over the past
years, using the Google Trend index of popularity. We can spot a considerable increment in the
popularity index of both terms in the year 2015, which corresponds to the fame of the AlphaGo
algorithm developed by the company, already acquired by Google, DeepMind. In October 2015,
AlphaGo became the first Go machine to beat a professional Go player. The AlphaGo algorithm
uses a combination of RL and DL techniques. The neural networks of the system were initially
bootstrapped from the human gaming experience. AlphaGo was initially trained to mimic human
play, trying to match the moves of expert players from recorded historical games, using a database
of around 30 million moves. Once he had reached a certain degree of skill, he was further trained
by being called upon to play a large number of matches against other instances of himself (see
[4]). We will build the basic algorithm under this phenomena in chapter 5, that although simple,
has been applied successfully to play ATARI games at a human mind level.

The outstanding results obtained by AlphaGo supposed a new resurgence of reinforcement
learning and opened the doors to the application of these methodologies in many other fields. To
cite some of them:

• Gaming: Atari games [5], Go [6], Poker [7] [8], . . .
• Autonomous driving [9] [10]
• Robotics [11]
• Natural language processing [12]
• Trading and finance [13] [14]
• Optimizing Chemical Reactions [15]
• Smart grids [16]
• News and products recommendation [17]

15

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 1.2: Some articles of the current applications of Deep Reinforcement Learning

1.2 Motivation
As seen in the previous section, DRL plays an important role in the today field of machine
learning, and many other applications, thanks to technological developments in the last era and
the ability of computers to perform increasingly complex tasks. This is mainly due, as will be
discussed in the respective chapter, for two reasons: is not necessary to know the dynamics of
the environment (how it is structured) in order to apply RL algorithms and thanks to the deep
approach we can face large-scale problems (in number of possible actions and states).

Personally, Reinforcement Learning Theory and its applications has a double interest for me:

• Decision making and Game Theory

It is evident that decision-making forms, perhaps not the “whole” of the human being, but the
central axis of its development, of its maturity. We need to make decisions to move forward in
our life. Maturing involves choosing, and therefore assuming, for more complex decisions that
are interrelated with ourselves, with our experiences and our knowledge on the environment that
surrounds us.

A first approach to the formalization of decision-making can be carried out by reviewing
Game Theory (GT), so I did in my final degree project [18]. I studied the main models of
GT and some of the solution algorithms related to those models, focusing on non-cooperative
games/conflicts and its application to classic games as Poker. GT solutions, like Nash equilibrium
or backwards induction, have the handicap that they cannot escalate easily to problems with
many players or with a set of actions of large dimensions, although they are algorithms that seek
an optimal strategy that provides the greatest utility. They also lie too much on the assumption
that all players might behave rationally when facing a conflict.

16

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Using Game Theory as a starting point, one can study the behavior of people when facing
a conflict. This is achieved by allowing a game to be played repeatedly, learning from your
own experience, repeated games. This is where Game Theory and Reinforcement Learning meet.
Learning algorithms such as Fictitious Player or Regret Matching can be combined with the RL
algorithms we will review in this project to obtain improvements in the results. In this case,
DRL algorithms have already been applied (see [19]) to find an optimal policy to follow when
playing a repeated game, even with multiple players or games of imperfect information.

• Philosophical implications of the exploration vs exploitation conflict

Inspired by behavioral psychology, reinforcement learning has many philosophical implications.
Besides the fact that it is itself one of the branches of psychology, called behaviorism, there is an
interesting struggle between two widely studied concepts in RL: exploration and exploitation.

Given the circumstance in which you have to make a decision, you can exploit the knowledge
you have about the environment or you can explore it in search of options that will provide
you with greater satisfaction. If you choose the best option, the action that gives you a better
utility (measuring utility as you desire: money, satisfaction, power, etc.), you are exploiting your
knowledge. If you choose an option that does not give you the best utility in the moment, but
allows you to look for actions that would give you a greater cumulative reward in the future than
the best option so far, you are exploring your environment.

Achieving this balance is not an easy task. If you tend to explore too much, you may get less
than you expected or you may never find the best action at all. Also there are some scenarios
where you can lose opportunity to choose the best action if you do not go for it from the very
beginning. On the other hand, if you always exploit your best action at the end of the process
you might get much less reward that you could have and you might regret it. One of the main
problem in RL is to compute the optimal balance between exploration and exploitation, and of
course, getting a optimal balance between this two concepts is very useful for life.

1.3 Project structure
The following chart summarizes the structure of the work, showing the itinerary to follow for the
correct understanding of it.

2. Introduction to Deep Learning

3. Introduction to Reinforcement Learning

4. Reinforcement Learning
solution methods

1. Introduction and motivation

5. Deep Q-Networks

17

I never think of the future - it comes soon enough
Albert Einstein

2
Introduction to Deep Learning

We will briefly introduce Deep Learning, from the point of view that will interest us in order to
understand Deep Q-Networks, considering it as a form of supervised learning. We will give a
general overview and expose the simplest neural network model. Neural networks have many
possible topologies and can be used in a wide range of problems, a more detailed description of
deep learning would imply reviewing concepts that go far beyond the objective of this project.

2.1 Supervised learning, bias and overfitting
In its most abstract form, supervised learning consists in finding a function f : X → Y based on
a training set (x1, y1), . . . , (xn, yn) for the purpose of approximating y at future observations of
an input x. We assume that there is a function with noise y = f(x) + ε, where the noise (ε) has
zero mean and variance σ2.

A supervised learning algorithm can be viewed as a function that maps a dataset D =
{(x1, y1), . . . , (xn, yn)} of learning samples (xi, yi)

i.i.d.∼ (X,Y) into a model. The prediction of
such a model at x ∈ X of the input space is denoted by f(x;D). Given D and a particular x, a
natural measure of the effectiveness of f as a predictor of y is

ED[L(y − f(x;D))],

where L(·, ·) is the loss function and E[·] means expectation with respect to the corresponding
probability distribution. If L(y, ŷ) = (y − ŷ)2 is it called the mean-squared error. We want
(y − f(x;D))2 to be minimal, both for x1, . . . , xn (training set) and for points outside of our
sample (test set). Of course, we cannot hope to do so perfectly, since the yi contain noise εi; this
means we must be prepared to accept an irreducible error in any function we come up with. For
mean-squared loss function the error decomposes naturally into a sum of a bias term and a
variance term.

ED
[
(y − f(x;D))2

]
= (BiasD[f(x;D)])2 + VarD[f(x;D)] + σ2,

19

Deep Reinforcement Learning Alberto Torrejón Valenzuela

where

• BiasD[f(x;D)] = ED[f(x;D)]− f(x).

• VaxD[f(x;D)] = ED
[
(ED[f(x;D)]− f(x;D))2

]
.

• σ2 is the the irreducible error.

Proof. The derivation of the bias–variance decomposition for squared error proceeds as follows.
First, recall that, by definition, for any random variable X, we have

Var[X] = E[X2]− E[X]2.

Rearranging, we get

E[X2] = Var[X] + E[X2]

and since f is deterministic, i.e. independent of D, E[f] = f .

Thus, given y = f + ε and E[ε] = 0, implies E[y] = E[f + ε] = E[f] = f .

Also, since Var[ε] = σ2,

Var[y] = E
[
(y − E[y])2

]
= E

[
(y − f)2

]
= E

[
(f + ε− f)2

]
= E

[
ε2
]

= Var[ε]+E[ε]2 = σ2+02 = σ2.

Thus, since ε and f̂ = f(x;D) are independent, we can write

E
[
(y − f̂)2

]
= E

[
(f + ε− f̂)2

]
=

=E
[
(f + ε− f̂ + E[f̂]− E[f̂])2

]
=

=E
[
(f − E[f̂])2

]
+ E

[
ε2
]

+ E
[
(E[f̂]− f̂)2

]
+ 2E[(f − E[f̂])ε]+

+ 2E[ε(E[f̂]− f̂)] + 2E[(E[f̂]− f̂)(f − E[f̂]) =

=(f − E[f̂])2 + E
[
ε2
]

+ E
[
(E[f]− f̂)2

]
+ 2(f − E[f̂])E[ε]+

+ 2E[ε]E[E[f̂]− f̂] + 2E[E[f̂]− f̂](f − E[f̂]) =

=(f − E[f̂])2 + E
[
ε2
]

+ E
[
(E[f̂]− f̂)2

]
=

=(f − E[f̂])2 + Var[ε] + Var[f̂] =
= Bias[f̂]2 + Var[ε] + Var[f̂] =
= Bias[f̂]2 + σ2 + Var[f̂].

�

20

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 2.1: Bias vs variance

This bias-variance decomposition can be useful because it highlights a trade-off between an
error due to erroneous assumptions in the model selection/learning algorithm (the bias) and an
error due to the fact that only a finite set of data is available to learn that model (the parametric
variance). The parametric variance is also called the overfitting error. The bias-variance
trade-off is a central problem in supervised learning. Ideally, one wants to choose a model that
both accurately captures the regularities in its training data, but also generalizes well to unseen
data. Unfortunately, it is typically impossible to do both simultaneously. High-variance learning
methods may be able to represent their training set well but are at risk of overfitting to noisy or
unrepresentative training data. In contrast, algorithms with high bias typically produce simpler
models that may fail to capture important regularities in the data.

Figure 2.2: Bias-variance trade off

21

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Even though there is no such direct decomposition for other loss functions, there is always a
trade-off between a sufficiently rich model (to reduce the model bias, which is present even when
the amount of data would be unlimited) and a model not too complex (so as to avoid overfitting
to the limited amount of data).

2.2 Deep learning approach
Deep learning relies on a function f : X → Y parameterized with θ ∈ Rnθ (nθ ∈ N):

y = f(x; θ).

A deep neural network is characterized by a succession of multiple processing layers. Each
layer consists in a non-linear transformation and the sequence of these transformations leads to
learning different levels of abstraction.

Lets describe the simplest neural network, the multilayer perceptron, with one fully connected
hidden layer. In this case, the first layer is given the input values (i.e. the input features)
x in the form of a column vector of size nx (nx ∈ N). The values of the next hidden layer
are a transformation of these values by a non-linear parametric function, which is a matrix
multiplication by W1 of size nh × nx (nh ∈ N), plus a bias term b1 of size nh, followed by a
non-linear transformation:

h = φ (W1 · x+ b1)

where φ is the activation function. The principal activation functions are shown in Figure 2.3.

Figure 2.3: Activation functions

22

Deep Reinforcement Learning Alberto Torrejón Valenzuela

This non-linear activation function is what makes the transformation at each layer non-linear,
which ultimately provides the expressivity of the neural network. The hidden layer h of size nh
can in turn be transformed to other sets of values up to the last transformation that provides
the output values y. In this case:

y = (W2 · h+ b2) ,

where W2 is of size ny × nh and b2 is of size ny (ny ∈ N). All these layers are trained to
minimize the empirical error IS [f]1. The most common method for optimizing the parameters of
a neural network is based on gradient descent via the backpropagation algorithm. In the simplest
case, at every iteration, the algorithm changes its internal parameters θ so as to fit the desired
function:

θ ← θ − α∇θIS [f],

where α is the learning rate. We will expand the explanation of gradient descent algorithm
adjusting it to our interests in chapter 5, studying the case of stochastic gradient descent.

Figure 2.4: Neural network with one hidden layer

1Given n data points (xi, yi), the empirical error is IS [f] = 1
n

∑n

i=1 L (yi, f (xi)).

23

Deep Reinforcement Learning Alberto Torrejón Valenzuela

2.3 Convolutional Neural Networks
As we will understand in the last chapter, learning in Atari games would be performed using
pixels as primary element. Due to this, the neural network model that suits our purpose is the
convolutional neural network (CNN)2, which is widely used in computer vision and image
pattern recognition.

CNN inputs are images and use the convolution operation on at least one of their layers. A
convolution is a mathematical operation on two functions that expresses how the shape of one is
modified by the other.

Definition 2.3.1 — Convolution.

The convolution of f and g is written f ∗ g. It is defined as the integral of the product of
the two functions after one is reversed and shifted.

(f ∗ g)(t) .=
∫ ∞
−∞

f(τ)g(t− τ) dτ

or equivalently shifting f and g role in the definition because of commutativity. The
convolution formula can be described as the area under the function f(x) weighted by the
function g(−x) shifted by amount t. If f and g are defined on the set Z of integers, the
discrete convolution of f and g is given by:

(f ∗ g)(n) .=
∞∑

m=−∞
f(m)g(n−m).

Although not essential, before feeding the network, it is appropriate to normalize the input
values. The colors of the pixels have values that go from 0 to 255, we can make a transformation
of each pixel value/255 and we will always have a value between 0 and 1.

Basically, it can be said that CNNs are composed of three types of layers:

• Convolutional layers, which play an extremely important role performing the convolution
operations.

• Pooling layers, which is responsible for reducing, among others, the dimensionality of
the network, the number of parameters and the complexity of the model.

• Fully connected layers, which contain neurons that are directly connected to the two
immediately adjacent layers.

Convolutional layer

It requires a few components, which are input data, a filter, and a feature map.

The input data is given by a dimensional matrix. If for example the input is a color image,
the the input matrix representing pixels would have 3 dimensions (three colors of the RGB color
representation). The feature detector, kernel or filter, will move across the image, proceeding
with the convolution, which can be interpreted as checking if the feature is present. The filter is
then applied to an area of the image, and a dot product is calculated between the input pixels
and the filter. This dot product is then fed into an output array. Afterwards, the filter shifts

2This is not the only way to use deep learning in RL, but is so far the basis we will need to understand the
Deep Q-Networks and to apply it to our case example.

24

Deep Reinforcement Learning Alberto Torrejón Valenzuela

by a stride, repeating the process until the kernel has swept across the entire image. The final
output from the series of dot products from the input and the filter is known as a feature map.

Figure 2.5: Example of filter application to the input in a CNN.

In reality, we will not apply only a kernel, but we will have many kernels (their set is the one
called filters). Therefore, there are some parameters that must be tuned during the process: the
number of filters, the stride (distance, or number of pixels, that the kernel moves over the input
matrix) and the padding. Zero-padding is usually used when the filters do not fit the input image.
This sets all elements that fall outside of the input matrix to zero, producing a larger or equally
sized output. There are three types of padding:

• Valid padding or no padding. In this case, the last convolution is dropped if dimensions do
not align.

• Same padding. This padding ensures that the output layer has same size as the input layer.
• Full padding. This padding increases the size of the output by adding zeros to the border

of the input.

After each convolution operation, a CNN applies transformation to the feature map, introducing
non-linearity to the model through an activation function (see Figure 2.3). The most used
activation function for this type of neural network is the ReLu.

Pooling layer

Pooling is an operation that reduces the number of network parameters. While convolutional
layers can be followed by additional convolutional layers, if we made a new convolution directly
from the feature map, the number of neurons in the next layer would highly increase and this
implies more processing.

To reduce the size of the next layer of neurons, we will do a subsampling process in which
we will reduce the size of our filtered images, but where the most important characteristics
detected by each filter should prevail. Pooling layers, also known as downsampling, conducts
dimensionality reduction of the number of parameters in the input. Similar to the convolutional
layer, the pooling operation sweeps a filter across the entire input, but the difference is that this
filter does not have any weights. Instead, the kernel applies an aggregation function to the values
within the receptive field.

25

Deep Reinforcement Learning Alberto Torrejón Valenzuela

There are different types of pooling layers:

• Max pooling. As the filter moves across the input, it selects the pixel with the maximum
value to send to the output array.

• Average pooling: As the filter moves across the input, it calculates the average value
within the receptive field to send to the output array.

Figure 2.6: Example of max pooling in a CNN

Fully connected layer

Since the output array does not need to map directly to each input value, convolutional (and
pooling) layers are commonly referred to as partially connected layers. In the last fully-connected
layers, each node in the output layer connects directly to a node in the previous layer. This type
of layer is exactly the same as any layer of a classic artificial neuron network. The main function
of the fully connected layers is to carry out a kind of grouping of the information that has been
obtained up to that moment, which will serve in later calculations for the final classification.

The last of these layers, also known as loss layer, will have the parameter K which is the
number of classes that are present in the data set. The final values of K will be fed to the output
layer, which through a certain probabilistic function will perform the classification. This layer
performs the task of classification based on the features extracted through the previous layers
and their different filters, producing a probability from 0 to 1 computed by certain function.
When it comes to classifying and choosing between K possible levels, a softmax loss classifier
would be used. The use of a Euclidean function is also common for the purpose of regression
against image labels.

• Softmax loss function:
σ(z)j = ezj∑K

k=1 e
zk
,

where
– zj =

∑d
k=0Wikxk is a vector of posterior probabilities.

– j represents the ith neuron of the output layer, that is, of the loss layer.
– K represents the total number of neurons in the loss layer.
– Wik are the weights.
– xi are the input values received by the loss layer.
– σ(z)j is the activation of the K neurons of the loss layer.

26

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• Euclidean loss function:

E = 1
2K

K∑
i=1
‖ŷi − yi‖22 ,

where
– K represents the total number of neurons in the loss layer.
– ŷi represents the predictions of the images.
– yi represents the actual values of the images.

Figure 2.7: Architecture of a CNN

27

To become good at anything you have to know how to apply basic principles.
To become great at it, you have to know when to violate those principles.

Garry Kasparov

3
Introduction to Reinforcement Learning

3.1 Basic concepts

Reinforcement learning (RL) is the computational approach to learning from interaction, an agent
interacts with its environment and learn to improve its behavior through being given subsequent
rewards. RL is learning how to map situations to actions so as to maximize a numerical reward
signal, following the scheme of a trial-and-error process with a delayed reward, positives or
negative, after each trial. The elements of reinforcement learning are the following:

• Agent: An agent takes actions that reflects its decisions.

• Action (A): is the possible moves the agent has to choose. It should be noted that agents
usually choose from a discrete set possible actions.

• Environment: The world through which the agent moves, and which responds to the
agent. The environment takes the current state and action of the agent as input, and
returns as output the reward and its next state.

• State (S): A state is a concrete and immediate situation in which the agent finds itself in
the environment. It can the current situation returned by the environment, or any future
situation.

• Reward (R): A reward is the feedback by which we measure the success or failure of an
agent’s actions in a given state. Rewards can be immediate or delayed and they effectively
evaluate the agent’s action.

• Policy (π): The policy is the strategy that the agent employs to determine the next action
based on the current state. It maps states to actions, moving towards the actions that
promise the highest reward.

• Value function: The expected long-term return, as opposed to the short-term reward.
There are two types of value function: only for states and for state-action pairs.

• Model of the environment: This is something that simulate the behavior of the envi-
ronment, or more generally, that allows inferences to be made about how the environment
will behave. Given a state and action, the model might predict the resultant next state
and next reward. Models are used for planning.

29

Deep Reinforcement Learning Alberto Torrejón Valenzuela

The agent and the environment interact in a sequence of discrete times t = 0, 1, 2, At each
step, the agent receives some representation of the environment state St ∈ S and on that basis
selects an action At ∈ A(s), or A if the set of actions is the same in all states. In the next time
step t+ 1, as consequence of its action, the agent receives a numerical reward Rt+1 ∈ R ⊂ R and
finds itself in a new state St+1

1.

Agent

action At

Environmentactual state St

new state St+1

reward Rt+1

takes changes

is represented by

produces

becomes

is recieved by

is in

Figure 3.1: Agent–environment interaction

To obtain a lot of reward, a reinforcement learning agent must prefer actions that it has tried
in the past and found to be effective in producing reward. But to discover such actions, it has
to try actions that it has not selected before. The agent has to exploit what it has already
experienced in order to obtain reward, but it also has to explore in order to make better action
selections in the future. This is known has the exploitation-exploration trade off. Actions
choices are then made based on value judgments, we seek actions that bring states of highest
values, not highest reward.

As one can see, the feedback the agent receives is truly important in RL. The feedback can
be received in two ways:

• Evaluative feedback: indicates how good the action taken was, but not whether it was
the best or the worst action possible.

• Instructive feedback: indicates the correct action to take, independently of the action
actually taken.

We also distinguish between two types of tasks at first:

• Non-associative tasks: tasks in which there is no need to associate different actions with
different situations, there is no notion of such states considered.

• Associative tasks: in general, in RL tasks you receive a signal and you choose your policy
based on that association.

1The reward is given when leaving the state not at the beginning of it, that is the reason why to action At it
corresponds reward Rt+1.

30

Deep Reinforcement Learning Alberto Torrejón Valenzuela

� Example 3.1 — Bandits problem.

In this example you are asked to pull one lever of the casino bandits at a time over k
possible levers, a ∈ {1, . . . , k}.

• At ≡ lever selected on time step t.
• Rt+1 ≡ price won when selecting lever At.

In the simplest bandits problem, we only have actions and rewards, thus there are no states
to consider, and it is a non-associative task. Now lets suppose we have a 2-armed bandit, with
two levers, and when pulling one lever we can find ourselves in two cases as show in Figure
3.1. If, somehow, we are told in which case we are before pulling the lever, then we will be
able to make the following associations:

• If case A then pull lever 2 (thus get reward of 20).
• If case B then pull lever 1 (thus get reward of 90).

This is called contextual bandits problem, an it is an example of associative task, where
the states can be considered the different cases.

�

lever 1 lever 2
case A 10 20
case B 90 80

Table 3.1: 2-armed bandit example

Another important concept to consider is stationarity. Stationary dynamics refers to the
environment, and states that the rules of the environment do not change over time. The rules of
the environment are often represented as an MDP model, which consists of all the state transition
probabilities and reward distributions. The stationary assumption asserts that these probabilities
do not change over time. Most of RL problems are non-stationary.

3.2 Markov Decision Process
In advance we employ notation and main formalization of the concepts from [1]. We formally
define a Markov Decision Process as

Definition 3.2.1 — Markov Decision Process (MDP).

An MDP is a 5-tuple (S,A, p, r, γ) where:

• S is the state space.
• A is the action space.
• p : S ×R×A× S → [0, 1] is the transition function.
• r : S ×A× S → R is the reward function, where R is a the set of possible rewards.
• γ ∈ [0, 1) is the discount factor.

In a finite MDP, S, A y R all have a finite number of elements.

31

Deep Reinforcement Learning Alberto Torrejón Valenzuela

We will suppose the random variables Rt and St have well defined discrete probabilities
distribution, depending on the preceding state and action.

p : S ×R×A× S → [0, 1]
p
(
s′, r | s, a

) .= Pr
{
St = s′, Rt = r | St−1 = s,At−1 = a

}
, ∀s, s′ ∈ S, r ∈ R, a ∈ A(s),

such as
∑
s′∈S

∑
r∈R p (s′, r | s, a) = 1, for all s ∈ S, a ∈ A(s). The probabilities given by p

completely characterize the environment dynamics, the states. The state must include information
about all aspects of the past agent-environment interaction that make a difference for the future.
We will say that a state is a Markov state if it satisfy the Markov property:

P [St+1 | st] = P [St+1 | s0, . . . , st] .

Using the joint probabilities defined before, we have the following probability functions that
we will be using for the rest of the project:

• State-transition probabilities

p : S × S ×A→ [0, 1] (abuse of notation),
p
(
s′ | s, a

) .= Pr
{
St = s′ | St−1 = s,At−1 = a

}
=
∑
r∈R

p
(
s′, r | s, a

)
.

• Expected rewards for state-action pairs

r : S ×A → R,

r(s, a) .= E [Rt | St−1 = s,At−1 = a] =
∑
r∈R

r
∑
s′∈S

p
(
s′, r | s, a

)
.

• Expected rewards for state action-next-state

r : S ×A× S → R,

r
(
s, a, s′

) .= E
[
Rt | St−1 = s,At−1 = a, St = s′

]
=
∑
r∈R

r
p (s′, r | s, a)
p (s′ | s, a) .

3.3 Goals

The rewards indicate how well an agent is doing at a step t, but, in particular, the reward signal
is not the place to impart to the agent prior knowledge about how to achieve what we want it
to do. For example, a chess playing agent should be rewarded only for actually winning, not
for achieving subgoals such of taking its opponents pieces or gaining control of the center of the
board. If achieving these subgoals were rewarded, then the agent might find a way to achieve
them, without achieving the real goal, e.g. it might find a way to take the opponent’s pieces even
at the cost of losing the game.

How do we formalize this goal? Using the concept of return.

Definition 3.3.1 — Reward hypothesis. All goals can be described by the maximization of the
expected cumulative reward or return.

32

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Let denote the sequence of rewards received after time step t by Rt+1, Rt+2, Rt+3, . . . , RT . We
shall then differentiate two cases:

• Episodic tasks (T < ∞). Agent-environment interaction breaks naturally into subse-
quences called episodes or trials (interactions from initial to end states). For this tasks we
distinguish between the set of non-terminal state, denoted by S, and the set of terminal
states, S+. An episodic task last a finite amount of time, T ≡ time of termination. T is
a random variable that normally varies from episode to episode. In episodic tasks there
might also be only a single reward at the end of the task, and one option is to distribute
the reward evenly across all actions taken in that episode.

Gt
.= Rt+1 +Rt+2 + · · ·+RT . (3.1)

• Continuous tasks (T =∞). There is not a terminal state, continuous tasks will never
end. Therefore, as the tasks might never end, the return expressed as 3.1 could be infinite.
We use then a discount factor, more recent reactions receive greater reward and actions
long time in the past receive smaller rewards.

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1. (3.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate.

If γ < 1, the infinite sum 3.2 has a finite value as long as the reward sequence is bounded. For
example, if the reward is a constant +1, the return is Gt =

∑∞
k=0 γ

k = 1
1−γ . If γ = 0, the agent

is myopic in being concerned only with maximizing immediate rewards. On the other hand, if
γ ≈ 1, the agent is considered to be far-sighted.

Returns at successive time steps are related to each other in a way that is important for the
theory and algorithms of reinforcement learning:

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·

= Rt+1 + γ
(
Rt+2 + γRt+3 + γ2Rt+4 + · · ·

)
= Rt+1 + γGt+1.

Problems might arise when distinguishing between episodic and continuous tasks.

� Example 3.2 — Pole-balancing.

Imagine we have a situation similar to Figure 3.2, where a toy car can be moved right and
left to get a pole balanced. The objective is to avoid the pole to fall. The pole is reset to
vertical after each failure.

We can see this game as an episodic tasks where episodes are the attempts to balance the
pole. A reward of +1 is given every time on which failure does not happens. Return at each
time would be the number of steps until failure. In this case successful balancing forever
would have an infinite return. So we might see it has a continuous task where the reward
should be -1 on failure and 0 in other case. In either cases maximized return is obtained by
keeping balance, but returns are different.

�

33

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 3.2: Pole balancing example

We need therefore a unified notation for episodic and continuous tasks. We consider absorbing
states for episodic tasks, a state that once entered cannot be left, and we define a general concept
of return for both:

Gt
.=

T∑
k=t+1

γk−t−1Rk,

including the possibility that T =∞ or γ = 1 (but not both).

3.4 Policies and value functions

Value functions for states (or for state-action pairs) estimate how good it is for the agent in terms
of expected return to be in a given state (or how good is to perform a given action in a given
state). Value functions are defined depending on particular ways to act, which are known as
policies. RL methods will specify how the agent’s policy is changed as a result of its experience.

Definition 3.4.1 — Policy.

A policy is a mapping from states to probabilities of selecting each possible action. We
find two types of policies:

• Deterministic policy: π(s) = a.

• Stochastic policy: π(s | a) = P [At = a | St = s].

Given a policy π we formally define value functions as follow:

• State value function for policy π or value function

vπ(s) .= Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S.

The value of a terminal state, if any, is defined as 0.

• Action-value function for policy π or Q-function

qπ(s, a) .= Eπ [Gt | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
.

34

Deep Reinforcement Learning Alberto Torrejón Valenzuela

vπ and qπ can be estimated (Monte Carlo methods) or approximate (approximate solution
methods)

3.4.1 Bellman equations

Bellman equation helps us to find optimal policies and evaluate states and actions. It claims that
the value of a state (or state-action pair) is the sum of the immediate reward and the discounted
value of successor states.

• Bellman equation for state value functions

vπ(s) = Eπ [Rt+1 + γvπ (St+1) | St = s] .

• Bellman equation for action-state value function

qπ(s, a) = Eπ [Rt+1 + γqπ (St+1, At+1) | St = s,At = a] .

We can give a more treatable expression with the help of back-up diagrams. For the state value
function we consider the following diagram

Figure 3.3: Back up diagram for state value functions

We can evaluate how good is state s following policy π:

vπ(s) =
∑
a∈A

π(a | s)qπ(s, a).

How good is then to take action a?

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p
(
s′ | s, a

)
vπ(s′).

Combining both expressions we get

vπ(s) =
∑
a∈A

π(a | s)(r(s, a) + γ
∑
s′∈S

p(s′ | s, a)vπ(s′)) =

=
∑
a∈A

π(a | s)[
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a) + γ
∑
s′∈S

∑
r∈R

p(s′, r | s, a)vπ(s′)] =

=
∑
a∈A

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvπ(s′)].

35

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Similarly, for state-action value functions we have the following back up diagram and expression

Figure 3.4: Back up diagram for action-state value functions

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)
∑
a∈A

π(a′ | s′)qπ(s′, a′) =

=
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a) + γ
∑
s′,r

p(s′, r | s, a)
∑
a∈A

π(a′ | s′)qπ(s′, a′)

=
∑
s′,r

p(s′, r | s, a)[r + γ
∑
a∈A

π(a′ | s′)qπ(s′, a′)]

=
∑
s′,r

p(s′, r | s, a)[r + γvπ(s′)].

3.5 Behaving optimally
Solving a RL tasks is to find a policy that achieves maximum reward in the long run. We can
define a partial ordering over policies: π is better than π′ if tis expected returns are greater or
equal to the π′ for all states

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s ∈ S.

Under this conditions, there always exists a policy that is better or equal tha the others, the
optimal policy π∗.

Theorem 3.5.1 For any MDP,

• There exists an optimal policy π∗ that is better than or equal to all other policies,
π∗ ≥ π, ∀π.

• All optimal policies achieve the optimal value function vπ∗(s) = v∗(s).

• All the optimal policies achieve the optimal action state-value function qπ∗(s, a) = q∗(s, a).

These optimal functions are defined as follow:

• Optimal state value function: v∗ tell us what is the maximum reward we can get from
the system.

v∗(s) = max
π

vπ(s) ∀s ∈ S

36

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• Optimal state-action value function: q∗ tell us maximum reward we are going to get
if we are in state s and take action a.

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S, a ∈ A(s).

3.5.1 Bellman optimality equations

The Bellman optimality equations express the fact that the value of a state under an optimal
policy must equal the expected return for the best action from that state:

v∗(s) = max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

E [Rt+1 + γv∗ (St+1) | St = s,At = a]

= max
a

∑
s′,r

p
(
s′, r | s, a

) [
r + γv∗

(
s′
)]
.

q∗(s, a) = Eπ∗

[
Rt+1 + γmax

a′
q∗
(
St+1, a

′) | St = s,At = a

]
=
∑
s′,r

p
(
s′, r | s, a

) [
r + γmax

a′
q∗
(
s′, a′

)]
.

We can write q∗ in terms of v∗:

q∗(s, a) = E [Rt+1 + γv∗ (st+1) | St = s,At = a] .

For finite MDPs, the Bellman optimality equation for v∗ has unique solution. The Bellman
optimality equation is actually a system of equations, one for each state, so if there are n states,
then there are n equations in n unknowns. If the dynamics of the environment are know, then one
can solve this system of equations for v∗ using a variety of methods for solving non-linear systems.
One can solve a related system for q∗. The running time complexity for this computation is
O(n3) [1]. Therefore, this is clearly not a practical solution for solving larger MDPs. In later
sections we will use more efficient methods like Dynamic Programming, Monte Carlo methods
and TD Learning.

� Example 3.3 — Recycling Robot. A mobile robot has the job of collecting trash of the
environment. Decisions are made following the battery level:

• S = {high battery level, low battery level}.
• A(high) = {search, wait}.
• A(low) = {search, wait, recharge}.

The transition probabilities and rewards for each state-action-next-state triple are shown in
Figure 3.5 and the MDP graph, for better understanding the dynamics of the environment, is
in Figure 3.6. We assume that rsearch > rwait .

Using the transition probabilities and reward we can give the Bellman optimality equation
expression for value function. Let’s denote h ≡ high, l ≡ low, and s ≡ search, w ≡ wait,
re ≡ recharge. For any choice of rs, rw, α, β and γ such as 0 ≤ α, β, γ ≤ 1 and rw ≤ rs, there
is exactly one pair of numbers v∗(h), v∗(l) that satisfies:

37

Deep Reinforcement Learning Alberto Torrejón Valenzuela

v∗(h) = max
{
p(h | h, s) [r(h, s, h) + γv∗(h)] + p(l | h, s) [r(h, s, l) + γv∗(l)] ,
p(h | h,w) [r(h,w, h) + γv∗(h)] + p(l | h,w) [r(h,w, l) + γv∗(l)]

}

= max
{
α [rs + γv∗(h)] + (1− α) [rs + γv∗(l)] ,
1 [rw + γv∗(h)] + 0 [rw + γv∗(l)]

}

= max
{
rs + γ [αv∗(h) + (1− α)v∗(l)] ,
rw + γv∗(h)

}
.

v∗(l) = max

βrs − 3(1− β) + γ [(1− β)v∗(h) + βv∗(l)] ,
rw + γv∗(l),
γv∗(h).

�

Figure 3.5: Recycling Robot transition probabilities and rewards

Figure 3.6: Recycling Robot MDP graph

Solving a RL problem can be seen as giving the solution to the Bellman optimality equation.
This solution relies on at least three assumptions that are rarely true in practice:

1) Accurate knowledge of the environment dynamics.
2) Computational power.
3) Markov property.

For example, although the first and third assumptions present no problems for the game of
Backgammon, the second is a mayor impediment, because game has 1020 states (see [20]).

38

We do not know what the rules of the game are; all we
are allowed to do is to watch the playing. Of course, if
we watch long enough, we may eventually catch on to a
few of the rules.

Richard P. Feynman

4
Reinforcement Learning solution methods

In this chapter we will review the main models exposed in [1], unifying the notation and following
the same structure for all methods to facilitate its understanding. The statements of the examples
are also taken from [1].

4.1 Dynamic programming

Assuming the environment is a finite MDP, the key idea of dynamic programming (DP) is the
use of value functions to organize the search for good policies. The requirements for DP are:

• Optimal substructure. The problem can be divided into subproblems which hold the
principle of optimality.

• Overlapping subproblems. The solution of a subproblem is saved and then used to
solve similar subproblems.

MDP satisfy both of these properties:

→ Optimal substructure. Bellman equation is defined as v(s) = E [Rt+1 + γv (St+1) | St = s],
this is, the value of a state is equal to the immediate reward our agent gets leaving the state plus
the value of the next state, so the equation is breaking down the process of finding the value
function of a state by dividing it into subproblems.

→ Overlapping subproblems. Value functions have already stored how good a particular state
is so we do not need to recompute the value of that state again and again.

DP assumes full knowledge of MDP, for this reason we will study methods that avoid this
assumption in further sections.

In general, a RL task is broken into two parts:

• Prediction. Evaluate the future given a policy. Suppose we have a MDP defined as
(S,A, p, r, γ), given a policy π we want to find the value function vπ.

• Control. Optimize the future, find the best policy. This involves optimizing the value
function to use it to find an optimal policy.

39

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Although our final goal will be getting control methods (which might include a prediction
part), the reason why differentiating between these two procedures is because most models differs
on prediction and use similar control methods.

4.1.1 Prediction

Recall, vπ =
∑
a π(a | s)

∑
s′,r p (s′, r | s, a) [r + γvπ (s′)].

Consider a sequence of approximate value functions v0, v1, v2, . . . each mapping S → R. The
initial approximation v0 is chosen arbitrarily, except for the terminal state, if any, that must be
given value 0. For the rest of states we follow the iterative policy evaluation rule:

vk+1(s) .= Eπ [Rt+1 + γvk (St+1) | St = s] =
∑
a

π(a | s)
∑
s′,r

p
(
s′, r | s, a

) [
r + γvk

(
s′
)]
. (4.1)

Clearly, vk = vπ is a fixed point for this update rule because the Bellman equation for vπ
assures the equality in this case. The sequence {vk} can be shown to converge to vπ under the
same conditions that guarantees the existence of vπ, i.e. {vk} −→

k→∞
vπ.

In order to formalize a prediction algorithm using dynamic programming formulation we need
a stoppage condition. We can compute maxs∈S |vk+1(s)− vk(s)| and stop if it is small enough.

4.1.2 Control

We know how good is to follow a given policy π (vπ), but would it be better to change to a new
policy? An idea is to consider deterministic policies, policies that gives full probability to an
action a, π′(s) = a. The true value of behaving like this should then be computed using qπ(s, a).

Theorem 4.1.1 — Policy improvement theorem. Let π, π′ be any pair of deterministic policies
such that ∀s ∈ S

qπ
(
s, π′(s)

)
> vπ(s).

Then the policy π′ must be as good as, or better than π. That is, it must obtain greater or
equal expected return ∀s ∈ S

v′π(s) > vπ(s).

40

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Proof.

vπ(s) ≤ qπ
(
s, π′(s)

)
= qπ(s, a)

= E
[
Rt+1 + γvπ (St+1) | St = s,At = π′(s)

]
= Eπ′ [Rt+1 + γvπ (St+1) | St = s]
≤ Eπ′

[
Rt+1 + γqπ

(
St+1, π

′ (St+1)
)
| St = s

]
= Eπ′

[
Rt+1 + γE

[
Rt+2 + γvπ (St+2) | St+1, At+1 = π′ (St+1)

]
| St = s

]
= Eπ′

[
Rt+1 + γRt+2 + γ2vπ (St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ (St+3) | St = s

]
...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · | St = s

]
= vπ′(s).

�

For states other than s, equation holds because two sides are equal.

If qπ(s, π′(s)) > vπ(s) then π′ is better than π. Thus we want to select the best possible qπ(s, a)
at each step, this is acting greedy at each step. The policy improvement rule is build then
following the greedy policy on the state-action value function1:

π′(s) .= argmax
a

qπ(s, a)

= argmax
a

E [Rt+1 + γvπ (St+1) | St = s,At = a]

= argmax
a

∑
s′,r

p
(
s′, r | s, a

) [
r + γvπ

(
s′
)]
.

Suppose the new policy π′ is as good as π but not better, vπ = vπ′ . In this case we get
the Bellman optimality equation and therefore vπ′ must be v∗ and π, π′ are optimal. Policy
improvement thus must give us a strictly better policy except when the original policy is already
optimal.

We call General Policy Iteration (GPI) the alternation between policy evaluation and policy
iteration.

v, π

v = vπ

v∗, π∗

π = gree
dy(v)

Figure 4.1: Convergence to optimality following general policy iteration diagram

1By construction greedy policy meets conditions of the theorem.

41

Deep Reinforcement Learning Alberto Torrejón Valenzuela

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ v∗

where E−→ denotes a policy evaluation and I−→ denotes a policy improvement. It turns out
that if we act greedily w.r.t. the values of the states we will eventually end up with an optimal
policy. In a finite MPD, the convergence is gotten after a finite number of iterations.

(!!!) : This algorithm is written as found in [1], but line marked can present some problems.
Imagine if we are in a state s where either actions a1, a2 predicted by the policy π lead to the
same state s′. In this case the policy will keep on oscillating and might never terminate. In order
to fix this, one can simply set policy_stable← F and change marked line for:

If vπ′(s) = vπ(s) then policy_stable← T

So far we have considered only deterministic policies. In general, we have stochastic policies
π(s | a). In the stochastic case we do not need to select a single action among them, instead each
maximizing action can be given a portion of the probability of being selected by the greedy policy
(any apportioning scheme is allowed as long as all suboptimal actions are given 0 probability).

� Example 4.1 — Gridworld. Lets consider the grid in 4.2. Here S = {1, 2, . . . , 14} is the set of
non-terminal states and the two shaded squares are the terminal states. In each non terminal
state, the set of possible actions is A = {↑, ↓,←,→}. Actions that would take the agent
off the grid leave the state unchanged. All transitions have a reward of Rt = −1 until the
terminal state is reached. This is r(s, a, s′) = −1 ∀s, s′ ∈ S, a ∈ A. Examples of transitions:

p(6,−1 | 5,→) = 1,
p(7,−1 | 7,→) = 1,
p(10, r | 5,→) = 0 ∀r ∈ R.

�

42

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 4.2: Gridworld example

S We are going to compute optimal policy for Example 4.1 using the control algorithm built.

Let suppose we want to evaluate the equiprobable random policy:

π(↑, s) = 1/4,
π(↓, s) = 1/4,
π(→, s) = 1/4,
π(←, s) = 1/4.

We will follow the 4.1 equation to evaluate states and we will take γ = 1.

v0 Initialize all values to zero. Terminal state will always be 0.

v1 Let evaluate state 5:

v1(5) = π(↑| 5)[p(1,−1 | 5, ↑)(−1 + 1 · v0(1))]+
= π(←| 5)[p(4,−1 | 5,←)(−1 + 1 · v0(4))]+
= π(→| 5)[p(6,−1 | 5,→)(−1 + 1 · v0(6))]+
= π(↓| 5)[p(9,−1 | 5, ↓)(−1 + 1 · v0(9))] = −1.

Once all the states are evaluated we will behave greedily following the state values:

43

Deep Reinforcement Learning Alberto Torrejón Valenzuela

v2 We can now evaluate, for example, states 1 and 5:

v2(1) = 1
4 · [1 · (−1 + (−1))]× 3 + 1

4 [1 · −1] = −1′5− 0′25 = −1′75.
v2(5) =

(
1
4 · [1 · (−1 + (−1))]

)
× 4 = −2.

And we follow the same pattern until we meet the stoppage condition.

Value iteration improvement

One drawback to policy iteration is that each of its iterations involves policy evaluation,
which might require multiple sweeps through the whole state set. Also if policy evaluation is
done iteratively, then convergence to vπ occurs only in the limit. Must we wait for the exact
convergence or can we stop short than that? The value iteration improvement combines policy
improvement and truncated policy evaluation steps, but policy evaluation is stopped after just
one sweep (one update of each step).

vk+1(s) = max
a

E [Rt+1 + γvk (St+1) | St = s,At = a] = max
a

∑
s′,r

p
(
s′, r | s, a

) [
r + γvk

(
s′
)]
.

(4.2)

44

Deep Reinforcement Learning Alberto Torrejón Valenzuela

4.1.3 Efficiency of dynamic programming

If the state set is very large, even a single sweep can be prohibitely expensive. Asynchronous
DP methods are iterative methods that update states in an arbitrary order. For example, one
version of asynchronous value iteration updates the value of only one state sk on each step k
using expression 4.2. Asynchronous algorithms also make easier to intermix computation with
real-time interaction. To solve a MDP, we can run an iterative DP algorithm at the same time
that an agent is actually experiencing the MDP. The experience of the agent can be used to
determine the states to which the DP algorithm applies its updates. At the same time, the latest
value and policy information from the DP algorithm can guide the decision making by the agent.
For example, we can apply updates to states as the agent visits them.

DP might not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite efficient. If we ignore a few technical details, in
the worst case, the time DP methods take to find an optimal policy is polynomial in the number
of states and actions. A DP method is guaranteed to find an optimal policy in polynomial time
even though the total number of (deterministic) policies is kn, where n and k denote the number
of states and actions. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods. But
linear programming methods become impractical at a much smaller number of states than do
DP methods, for the largest problems, only DP methods are feasible.

Finally, we note one last special property of DP methods, all of them update estimates of the
state values based on estimates of the values of successor states. That is, they update estimates
on the basis of other estimates. We call this general idea bootstrapping. Many RL methods
perform bootstrapping, even those that do not require, as MDP requires, a complete and accurate
model of the environment. In the next sections we explore RL methods that do not require a
model and do not bootstrap (Monte Carlo) and methods that do not require a model but do
bootstrap (TD learning).

45

Deep Reinforcement Learning Alberto Torrejón Valenzuela

4.2 Monte Carlo methods
Now we do not assume complete knowledge of the environment, that is full knowledge of
the probability distribution of transitions. Monte Carlo methods (MC) learns directly from
experience, sample sequence of states, actions and rewards:

S0, A0, R1, S1, A1, . . . , RT .

We can get two types of experience:

• Actual experience; despite not having prior knowledge of the environment dynamics.

• Simulated experience; no need for a model.

Samples are only defined for episodic tasks and updated after each episode (not step-by-
step). MC methods sample and average returns for each state-action pair.

4.2.1 Prediction

Value estimation (vπ)

The goal is to learn value function for some policy vπ from episodes of experience under that
policy π, instead of using an expected return vπ = E[Gt | St = s] we use empirical mean. We
will average returns observed after visits to s, there exists two forms of doing this:

• First visit MC (FVMC): average returns only for first time s is visited in an episode.
Only considers each state once in an episode, we do not consider if in some loop we visit
that state again. We get the optimal value function from the law of large numbers and
keep on averaging them over multiple episodes.

• Every visit MC (EVMC): average returns for every time s is visited in an episode. This
is, increment the state counter every time the state is visit and not only once per episode.

� Example 4.2 — MC policy value evaluation example. Consider two episodes of the same MDP
where the possible states are {A,B, terminate}:

A
+3−→ A

+2−→ B
−4−→ A

+4−→ B
−3−→ terminate

B
−2−→ A

+3−→ B
−3−→ terminate

A
+3−→ A ≡ transition from state A to A with a reward of +3 for this transition.

• FVMC
– V (A)

∗ 1st episode: +3 + 2− 4 + 4− 3 = +2.
∗ 2nd episode: +3− 3 = 0.
∗ V (A) = 2+0

2 = 1.
– V (B)

∗ 1st episode: −4 + 4− 3 = −3.
∗ 2nd episode: −2 + 3− 3 = 2.
∗ V (A) = (−3)+(−2)

2 = −2.5.

46

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• EVMC
– V (A)

∗ 1st episode: (3 + 2− 4 + 4− 3) + (2− 4 + 4− 3) + (4− 3) = 2− 1 + 1 = 2.
∗ 2nd episode: 3 + (−3) = 0.
∗ V (B) = 2−1+1+0

4 = 0.5.
– V (B)

∗ 1st episode: (−4 + 4− 3) + (−3) = (−3) + (−3) = −6.
∗ 2nd episode: (−2 + 3− 3) + (−3) = (−2) + (−3) = −5.
∗ V (B) = −3−3−2−3

2 = −2.75.

We can advert that the results both methods arises are different.

�

Therefore we can build an algorithm for value estimation:

0. Choose FVMC or EVMC.
1. Generate an episode following π.
2. Increment counter N(S)← N(S) + 1.
3. Increment total return S(s)← S(s) +Gt.
4. Value is estimated by mean return V (s)← S(s)/N(s).
5. Repeat from 1 until convergence.

Here we show FVMC algorithm for prediction more detailed.

Incremental average implementation

We can reduce the computational running time of the algorithm by using the incremental
implementation of the mean. The mean µ1, µ2, . . . of a sequence x1, x2, . . . can be computed
incrementally,

µk = 1
k

k∑
j=1

xj

= 1
k

xk +
k−1∑
j=1

xj

= 1
k

(xk + (k − 1)µk−1)

= µk−1 + 1
k

(xk − µk−1)

47

Deep Reinforcement Learning Alberto Torrejón Valenzuela

In our algorithm we will only need to change line (∗) for:

N(St)← N(St) + 1
V (St)← V (St) + α(Gt − V (St))

where α = 1/N(St) (step-size) for stationary distribution and is some value for non-stationary
distribution for running mean, i.e. forget old episodes so we do not have the baggage of past.

Action values estimation (qπ)

With a model, state values alone are sufficient to determine a policy; one simply looks ahead
one step and chooses whichever action leads to the best combination of reward and next state.
Without a model state values are not sufficient. One must explicitly estimate the value of each
action in order to the values to be useful in suggesting a policy. We use same ideas of estimating
value of states: every visit and first visit.

Problem: is π is deterministic, some (many) (s, a) pairs will never be visited.

Solution: exploration. Both methods converges asymptotically if every state action pair is
visited. We can use exploring starts assumption which states that every state-action pair has
non-zero probability of being the starting pair.

4.2.2 Control

The overall idea for MC control is to proceed as DP:

• MC policy iteration: using previous FVMC and EVMC.
• MC policy improvement: greedyfing respect to action-state value.

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ q∗

Figure 4.3: Control diagram for Monte Carlo methods

Again, policy improvement is done greedyfing. In this case we will be making the policy greedy
with respect to to current action-state value, and therefore no model is needed to construct the
greedy policy:

greedy(q) ∼ π(s) = arg max
a

q(s, a)

48

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Policy improvement then can be done by constructing each πk+1 as the greedy policy with
respect to qπk .

N Does the greedified policy meet the conditions for policy?

qπk
(s, πk+1(s)) = qπk

(s, arg max qπk
(s, a))

= max
a

qπk
(, a)

> qπk
(s, πk(s))

> vπk
(s)

Thus πk+1 > πk by the policy improvement theorem.

We can then give a control algorithm holding exploring starts assumption:

We can again reforce our algorithm using incremental averaging implementation changing line
(∗) for:

N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) + 1
N(St, At)

(G−Q(St, At))

It is easy to see that MCES cannot converge to a suboptimal policy. If it did, then the value
function of that policy would cause the policy to change. Though practically demonstrated, it
has not been theoretically proven and is one of the most fundamentals open theoretical questions
in RL [21].

49

Deep Reinforcement Learning Alberto Torrejón Valenzuela

4.2.3 Improving Monte Carlo methods

We made two unlikely assumptions above in order fo easily obtain convergence for MC:

Infinite number of episodes

Two approaches for getting this working. One is to hold firm to the idea of approximating qπk
in each policy evaluation, measurements and assumptions are made to obtain bounds on the
magnitude and probability of errors in estimates, and then sufficient steps are taken during each
policy evaluation to assure that these bounds are sufficient small. This approach might require
far too many episodes to be useful in practice. Second approach is we give up trying to complete
policy evaluation before returning to policy evaluation before returning to policy improvement.
On each evaluation step we move the value function toward qπk , but we do not expect to actually
get close except over many steps.

Episode have exploring starts

To get disposed with the unrealistic hypothesis of exploring starts we have two approaches:

• On-policy methods: evaluate or improve the policy that is used to make decision
repeatedly.

• Off-policy methods: evaluate or improve a policy different from that used to generate
the data. Indeed, we can learn directly form taking different actions, so a policy is not
needed at all.

In advance, we will be differentiating between on-policy and off-policy methods.

4.2.3.1 On-policy methods

The prediction algorithm reviewed before is a on-policy method. In on-policy control methods
the policy is generally soft, meaning that π(a | s) > 0 ∀s ∈ S, ∀a ∈ A(s), but gradually shifted
closer to a deterministic policy.

We use ε-greedy policies, which are examples of ε-soft policies, defined as policies for which
π(a | s) ≥ ε

|A(s)| ∀s ∈ S,∀a ∈ A(s).

50

Deep Reinforcement Learning Alberto Torrejón Valenzuela

We can show that ε-greedy w.r.t. qπ is an improvement over any ε-soft policy.

Proof. Using the policy improvement theorem, let π′ be the ε-greedy policy, then

qπ
(
s, π′(s)

)
=
∑
a

π′(a | s)qπ(s, a)

= ε

|A(s)|
∑
a

qπ(s, a) + (1− ε) max
a

qπ(s, a)

≥ ε

|A(s)|
∑
a

qπ(s, a) + (1− ε)
∑
a

π(a | s)− ε
|A(s)|

1− ε︸ ︷︷ ︸
(∗)

qπ(s, a)

= ε

|A(s)|
∑
a

qπ(s, a)− ε

|A(s)|
∑
a

qπ(s, a) +
∑
a

π(a | s)qπ(s, a)

= vπ(s).

Thus by the policy improvement theorem π′ ≥ π, (vπ′(s) ≥ vπ(s) ∀s ∈ S).

(*): π(a | s) = 1− ε+ ε
|A(s)| =⇒ 1 =

π(a|s)− ε
|A(s)|

1−ε .

�

We can also prove that the equality can hold only when both π′ and π are optimal among the
set of ε-soft policies, that is, when they are better than or equal to all other ε-soft policies [1].
Thus we have showed that there will be improvements in every step if we already are not at the
optimal value function, but as the previous section, this only happens among the set of ε-soft
policies although we have eliminated the assumption of exploring starts.

4.2.3.2 Off-policy methods

All learning control methods face a dilemma: they seek to learn action values conditional on
subsequent optimal behavior, but they need to behave non-optimally in order to explore all
actions. To deal with this, an approach is to use two separate policies: the policy learned about
(target policy) and the policy used to generate behaviour (behaviour policy). In off-policy methods
improvement and evaluation are done on a different policy:

• Target policy π(a | s): the value function of learning is based on π. We want the target
policy to be optimal. The target policy will be used for action selection after the learning
process is complete (deployment).

• Behaviour policy b(a | s): the behaviour policy is used for action selection while gathering
episodes to train the agent.

Some concepts to review before building our off-policy method are the following:

Coverage assumption

In order to use episodes from b to estimate values for π we require that every action taken under π
is also taken, at least occasionally, under b. That is, we require that π(a | s) > 0 =⇒ b(a | s) > 0.

51

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Importance sampling

Suppose we have a random variable X ∼ b sampled from behaviour policy distribution b. We
want to estimate the expected value of X w.r.t. the target distribution π, Eπ[X].

Eπ[x] =
∑
x

xπ(x) =
∑
x

xπ(x)b(x)
b(x) =

∑
x

x
π(x)
b(x) b(x) =

∑
xρ(x)b(x).

where ρ(x) = π(x)
b(x) is called the importance sampling ratio.

Let xρ(x) be a new random variable Xρ(X), then

Eπ[X] =
∑
x

xρ(x)b(x) = Eb [Xρ(X)] ,

and we will be able to estimate expectation as follows

Eπ[X] = Eb [Xρ(X)] ≈ 1
n

n∑
i=1

xiρ (xi) (with xi ∼ b).

In off-policy methods we have vb(s) = Eb[Gt | St = s] and we want to compute vπ(s). Applying
importance sampling:

vπ(s) = Eπ [Gt | St = s] = Eb [ρGt | St = s] ,

where ρ = P [trajectory under π]
P [trajectory under b] .

The probability of a trajectory, under a policy π, can be given by

P [trajectory under policy π] = P [At, St+1, At+1, . . . , ST | St, At:J ∼ π]
= π (At | St) p (St+1 |St, At)π (At+1|St+1) . . . P (ST | ST−1, AT−1)

=
T−1∏
k=1

π (Ak | Sk) p (Sk+1 | Sk, Ak) .

where p is the state-transition probability function.

=⇒ ρt:T−1 =
∏T−1
k=1 π(Ak | Sk)p(Sk+1 | Sk, Ak)∏T−1
k=t b(Ak | Sk)p(Sk+1 | Sk, Ak)

=
T−1∏
k=t

π(Ak | Sk)
b(Ak | Sk)

.

Therefore, using this expression we can estimate vπ(s). Let,

• J(s) ≡ set of all time steps in which state s is visited.

• T (s) ≡ first time of termination following t.

• Gt ≡ return after t up to T (t).

52

Deep Reinforcement Learning Alberto Torrejón Valenzuela

We have two strategies of importance sampling:

• Ordinary importance sampling

V (s) .=
∑
t∈J(s) ρt:T (t)−1Gt

|J(s)| .

• Weighted importance sampling

V (s) .=
∑
t∈J(s) ρt:T (t)−1Gt∑
t∈J(s) ρt:T (t)−1

,

or zero if the denominator is zero. For action value we got similar expression, the only change
is that instead of counting the state visit we count the state-action visit i.e. J(s)→ J(s, a)

Q(s, a) .=
∑
t∈J(s,a) ρt:T (t)−1Gt∑
t∈J(s,a) ρt:T (t)−1

.

In practice, the weighted estimator has dramatically lower variance and is strongly preferred.
Also every-visit algorithms are used because it removes the need to maintain which states have
been visited.

Incremental implementation2

Suppose we have a sequence of returns G1, G2, . . . , Gn−1 all starting in the same state and
each with a corresponding random weight Wi ≡ ρti:T (ti)−1.

We derive the the estimate of

Vn =
∑n−1
k=1 WkGk∑n−1
k=1 Wk

.

Let Cn+1
.= Cn +Wn+1, C0

.= 0 and V1 arbitrarily, then we have

Vn+1 =
∑n
k=1WkGk∑n
k=1Wk

= 1
Wn +

∑n−1
k=1 Wk

(
WnGn +

n−1∑
k=1

WkGk

)
=

= WnGn
Cn

+
∑n−1
k=1 WkGk
Cn

= WnGn
Cn

+
∑n
k=1Wk

Cn
Vn =

= WnGn
Cn

+ Cn −Wn

Cn
Vn.

=⇒ Vn+1 = Vn + Wn

Cn
(Gn − Vn) , n ≥ 1.

2For the weighted importance sampling case

53

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Now we have settled the conditions to build a prediction off-policy method using incremental
implementation.

For control the behaviour policy can be anything, but in order assure convergence of π to the
optimal policy an infinite number of returns must be obtained for all possible state-action pairs,
which is achieved using ε-soft policies. The target policy π ≈ π∗ is the greedy policy with respect
to Q, which is an estimate of qπ. When the target policy π is ε-greedy, it is deterministic and
π(At | St = s) = 1.

Thus, the off-policy MC control algorithm can be written as follows.

54

Deep Reinforcement Learning Alberto Torrejón Valenzuela

4.3 Temporal Difference Learning

Temporal difference (TD) is a combination of MC and DP ideas. MC in the sense of learning
from raw experience and without a model of the environment and DP because of bootstrapping.

4.3.1 Prediction

Monte Carlo methods wait until the return following the visit is known and the use that as a
target for V (St), then it depends upon the complete roll out of any episode:

V (St)← V (St) + α[Gt + V (St)]

TD methods need to wait only until the next step:

V (St)← V (St) + α(Rt+1 + γV (St+1)︸ ︷︷ ︸
estimated Gt

− V (St))

where α is a step size/learning rate and γ is the discount factor. We call Rt+1 + γV (St+1) the
TD target and δt = Rt+1 + γV (St+1)− V (St) the TD error.

The TD(0) is the name given to TD prediction algorithm and is the base of the most important
algorithms in TD and RL so far. We use the idea of bootstrapping, we start off with a guess and
make a move based on the returns updating our original guess.

Before reviewing TD control methods, some important concerns:

Step size and discount factor. . .

• Learning rate/step size α. Determines to what extent newly acquired information overrides
old information. A factor of 0 makes the agent learn nothing (exclusively exploiting prior
knowledge), while a factor of 1 makes the agent explore possibilities. In fully deterministic
environments, a learning rate of α = 1 is optimal. When the problem is stochastic, the
algorithm converges under some considerations on the learning rate that require it to
decrease to zero. In practice, often choose a constant rate such α = 0.1.

• Discount factor γ. Determines the importance of future rewards. A factor of 0 will make
the agent consider the most current rewards (myopic), while a factor of 1 will make it strive
for a long-term high reward. If the discount factor exceeds 1, the action values may diverge.
For γ = 1, without a terminal state, or if the agent never reaches one, rewards generally

55

Deep Reinforcement Learning Alberto Torrejón Valenzuela

become infinite. Even for γ only slightly lower than 1, Q-functions leads to propagation
error and instabilities when using approximation value function with a neural network.

About the TD error. . .

Notice that the TD error δt is the error made in estimate at that time. Because TD error
depends on the next state and next reward, it is not available until one step later. We can
calculate the Monte Carlo error as sum of TD errors from that point:

Gt − V (St) = Rt+1 + γGt+1 − V (St) + γV (St+1)− γV (St+1)
= δt + γ (Gt+1 − V (St+1))
= δt + γδt+1 + γ2 (Gt+2 − V (St+2))
= δt + γδt+1 + γ2δt+2 + · · ·+ γT−t−1δT−1 + γT−t (GT − V (ST))
= δt + γδt+1 + γ2δt+2 + · · ·+ γT−t−1δT−1 + γT−t(0− 0)

=
T−1∑
k=1

γk−tδk

This identity is not exact if the V changes during the episode (as in TD(0)), but if the step
size is small holds approximate.

MC vs TD. . .

• TD can learn before knowing the final outcome.
– TD can learn online after each step.
– MC must wait until end of episode before return is known.

• TD can learn without the final outcome.
– TD can learn from incomplete sequences. Also works in continuing tasks.
– MC can only, learn from complete sequences. Only works for episodic tasks.

• Bias/variance trade-off. Return Gt = Rt+1 + γRt+2 + · · · + γ>−1RT is an unbiased
estimate of vπ (St). True TD target Rt+1 +γππ (St+1) is also an unbiased estimate of vπ (St).
But TD target Rt+1 + γV (st+1) is biased estimate of vπ (st). TD target is much lower
variance that the return, return depends on many random actions, transitions, rewards
meanwhile TD depend on one random action, transition and reward.
– MC has high variance, zero bias. It has good convergence properties (even with

function approximation). It is not very sensitive to initial value and is very simple to
understand and use.

– TD has low variance, some bias. It is usually more sensitive to initial value. TD(0)
converges to vπ(s) but not always with function approximation.

• Markov property.
– MC does not exploits Markov Property.
– TD exploits Markov property.

4.3.2 SARSA (on-policy control)

The proceeding of SARSA is simple: you start with a state-action pair (S,A), you sample the
environment, get reward R and end up in state S′, where sampling your policy take you to action
A′ (i.e. SARS′A′).

Figure 4.4: Transition diagram for SARSA

56

Deep Reinforcement Learning Alberto Torrejón Valenzuela

We consider these transitions and get the following equation for the value function:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

This update is done for each non-terminal state, for a terminal state we define Q(S,A) = 0.

The convergence properties of SARSA depend on the nature of the policy’s dependence on Q,
e.g. one could use ε-greedy or ε-soft policies. SARSA converges with probability 1 to an optimal
policy and optimal action-value function as long as all the states-actions pairs are visited infinite
times.

4.3.3 Q-learning (off-policy control)

Q-learning has gained popularity recently due to the implementation as a Deep RL algorithm
(which we will review in chapter 5) thanks to DeepMind Google’s company. The idea was first
defined by Watkings in 1969 in his PhD thesis “Learning from Delayed Rewards” [22].

The Q-function is defined as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, At+1)−Q(St, At)] (4.3)

In this case, the learned action-value function Q directly approximates q∗, the optimal action-
value function, independently on the policy being followed (also off-policy). The policy still has
an effect, it determines which state-action pairs are visited and updated. All that is required for
correct convergence is that all pairs continue to be updated.

57

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Initial conditions (Q0)

Since Q-learning is an iterative algorithm, it implicitly assumes an initial condition before the
first update occurs. High initial values, also known as optimistic initial conditions, can encourage
exploration: no matter what action is selected, the update rule will cause it to have lower values
than the other alternatives, thus increasing their choice probability. The first reward can be used
to reset the initial condition. According to this idea, the first time an action is taken the reward is
used to set the value of Q. This allows immediate learning in case of fixed deterministic rewards.
A model that incorporates reset of initial conditions (RIC) is expected to predict participants
behaviour better than a model that assumes any arbitrary initial condition (AIC).

Implementation of Q-learning: Q-tables

The easiest implementation of Q-learning is through the use of Q-tables, which are tables
whose cells are the combination of state-action pairs first initialized to zero and then each cell is
updated through training. Each cell represents the maximum expected reward. The update of
each state-action is carried using Q-learning function 4.3.

Initialize Q-table

Choose an action

Perform action

Measure reward

Update Q-table

Figure 4.5: Q-learning scheme using Q-tables

� Example 4.3 — Q-table Gridworld.

Consider the Gridworld of states in Figure 4.6. Actions are {↑, ↓,←,→}. Rewards at each
step are -1, unless you jump into a bomb, which is rewarded with -100 and you will have to
start again, or if you get power (ray), in which case you get +1. The negative -1 is given so
that the robot takes shortest path and reaches the goal as fast as possible. If the robot reach
the End, he gets 100 points. We choose α = 0.1 and γ = 0.9. �

Figure 4.6: Q-table Gridworld

58

Deep Reinforcement Learning Alberto Torrejón Valenzuela

First, we initialize the Q-table:

↑ → ↓ ←
Start 0 0 0 0
Blank 0 0 0 0
Power 0 0 0 0
Bomb 0 0 0 0
End 0 0 0 0

Table 4.1: Gridworld Q-table

On first iteration, we choose action →, evaluate it following 4.3 and we actualize the Q-table:

Qnew(start,→) =
= Q(start,→) + 0′1.[−1 + 0′9 max{Q(start, ↓), Q(start, ↑), Q(start,←), Q(start, ↑)} −Q(start,→)] =
= 0 + 0′1.[−1 + 0′9.0− 0] = −0′1

For a second iteration, we might behave greedily, but if so we will choose another random
action because all are equally valued.

Qnew(blank, ↓) =
= 0 + 0′1.[−100 + 0′9.max{Q(start, ↓), Q(start, ↑), Q(start,←), Q(start, ↑)} − 0] =
= 0 + 0′1.[−100 + 0′9.0− 0] = −10

After two iterations we will have the next Q-table

↑ → ↓ ←
Start 0 -0’1 0 0
Blank 0 0 -10 0
Power 0 0 0 0
Bomb 0 0 0 0
End 0 0 0 0

Table 4.2: Gridworld Q-table after 2 iterations

Now the episode is over, so we start a new one and follow the same idea until convergence
(when satisfying stoppage condition for example).

Q-learning at its simplest stores data in tables. This approach fails with increasing numbers
of states/actions since the likelihood of the agent visiting a particular state and performing a
particular action might be increasingly small. Some solutions for this issue:

• Q-learning can be combined with function approximation. This makes possible to apply
the algorithm to larger problems, even when the state space is continuous. One possibility
is to use an (adapted) artificial neural network as a function approximator (chapter 5).
Function approximation may speed up learning in finite problems, due to the fact that the
algorithm can generalize earlier experiences to previously unseen states.

59

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• Another technique is to try to decrease the state action space. For example, in the previous
gridworld we could have used positions as states like we did in the DP section, but instead
we just use the element the agent will find in a state and this result in less states; another
way of planning.

4.3.3.1 Double Q-learning

In these algorithms, a maximum over estimates values is used implicitly as an estimate of the
maximum value, which can lead to a significant positive bias. One way to handle this bias is to
introduce two q-values: one q-value Q1 to determine the maximizing action A∗ = argmaxaQ1(a)
and another Q2, to provide the estimate of its value Q2 (A∗) = Q2 (argmaxaQ1(a)). Both Q1(a)
and Q2(a) are estimates of the true value q(a) for all a ∈ A. The estimate is unbiased in the sense
that E [Q2 (A∗)] = q (A∗). We can also repeat the process with the role of the two estimates
reversed to yield a second unbiased estimate Q1 (argmaxaQ2(a)). Then two separate value
functions are trained in a mutual environment using separate experiences. The double Q-learning
update step is then as follows:

Q1 (St, At)← Q1 (St, At) + α [Rt+1 + γQ2 (St+1, argmaxaQ1 (St+1, At+1)) −Q1 (St, At)]
Q2 (St, At)← Q2 (St, At) + α [Rt+1 + γQ1 (St+1, argmaxaQ2 (St+1, At+1)) −Q2 (St, At)]

Of course there are double versions of SARSA. There are several more algorithms that might
perform slightly better depending on the circumstances, for example n-step bootstrapping and
TD(λ), which also combines the ideas of both MC and TD, but for now we have settled the
basis to reach our final goal: understanding the Deep Q-Networks.

60

In games, we know who has won... you get the
reinforcement for having played well.

Michael A. Stackpole

5
Example: Blackjack

� Example 5.1 — Blackjack.

Player is given two cards. Dealer is given also two cards, but you can only see one. If a
player is given 21, he wins (get a natural) unless dealer gets 21, which ends in a draw. In
the simplest Blackjack version, if the player does not have a natural, then he can hit cards
until he either stick or goes bust (cumulative sum above 21). The set of actions is therefore
A = {HIT, STICK}. If he goes bust, he loses, and if he sticks, is the dealer’s turn, which
can hit or stick following a fixed strategy:

Dealer’s fixed strategy =
{
STICK if dealer cumsum ≥ 17
HIT if dealer cumsum < 17

Card values are:

• A ≡ 1 or 11. If the player holds an A he can use as 11 without going bust, then that
ace is said to be usable.

• #i ≡ i ∀i = {2, . . . , 10}.
• J,Q,K ≡ 10.

The objective of the game is to have your card sum greater than the dealer’s without going
exceeding 21. The states are based in three facts:

• Current sum [12, 21] (for less than 12 agent should always HIT).
• Dealer’s showing card {A, 2, . . . , 10}.
• Having a usable card or not.

�

61

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 5.1: Example of a Blackjack hand

We have a total of 200 possible states. DP methods require knowing the action-state transitions
probabilities and this can be complex to compute for Blackjack because they might change on
each episode. It is straightforward to apply Monte Carlo and TD learning to Blackjack because
episodes can be considered the different hands, having a clear beginning and ending.

Also, a well known system to play Blackjack is following Thorp’s basic strategy. This is simply
a table containing each possible combination of states in Blackjack (the sum of your cards and the
value of the card being shown by the dealer) along with the best action to take (HIT or STICK)
according to probability computations. This is an example of policy and we will compare our
model optimal policies with this policy.

A 2 3 4 5 6 7 8 9 10
≤ 11 H H H H H H H H H H
12 H H H S S S H H H H
13 S S S S S S H H H H
14 S S S S S S H H H H
15 S S S S S S H H H H
16 S S S S S S H H H H
17 S S S S S S S S S S
18 S S S S S S S S S S
19 S S S S S S S S S S
20 S S S S S S S S S S
21 S S S S S S S S S S

Table 5.1: Thorp’s basic strategy for Blackjack

The gym library in Python have already programmed this Blackjack version, so we can use it
to simulate different episodes. In this version, the agent only has 2 options: HIT (1) or STICK
(0). The episode will end whenever the player wins or lose (if tied then keep playing). The reward
for winning is +1, drawing is 0, and losing is -1.

62

Deep Reinforcement Learning Alberto Torrejón Valenzuela

5.1 Prediction
Just for Monte Carlo methods, we first see how the prediction process works to evaluate a given
policy. We consider the following policy:

π ≡
{
STICK if current sum ≥ 20
HIT if current sum < 20

We will use the simplest prediction algorithm, first visit MC prediction algorithm we get
following evaluation of our policy π. After 500,000 episodes we get the following results:

Figure 5.2: Evaluation of the policy using First Visit Monte Carlo algorithm for prediction

We notice that having a sum of 20 or 21 is positive for our behavior following policy π. Precisely,
this is because we STICK when we get 20 or 21, situation at which we will be more likely to win
in most of the cases. Meanwhile, if we always HIT when we have less then 20, we can see a slope
in the policy values; hitting with a value of 19 is bad, we will end up losing most of the hands,
but hitting with a sum of 11 is better (although not much) because we could receive a sum near
20 with a few cards.

63

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Another aspect to note is that if the dealer shows an 1 (ace) or a 10, the value of the state
decreases. In these cases, the dealer could easily exceed our sum with another card. In the case
that we have a usable ace, the value function of the states is more abrupt, although it reflects
the same conclusions. This is because it is more unlikely that we have a usable ace and although
we have played 500,000 episodes, it is not enough to make it smoother.

5.2 Control
Now we can use control methods to look for an optimal policy (also for optimal value function,
although we will not compute it). After running 500,000 episodes these are the optimal policies
computed:

• On-policy first visit MC algorithm.

Average payout after 1000 rounds is -48.862.

Figure 5.3: Optimal policy for on-policy MC

• Off-policy first visit MC algorithm using weighted importance sampling.

Average payout after 1000 rounds is -114.669.

Figure 5.4: Optimal policy for off-policy MC

64

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• SARSA (On-policy TD algorithm)

Average payout after 1000 rounds is -174.733.

Figure 5.5: Optimal policy for SARSA

• Q-Learning (Off-policy TD algorithm)

Average payout after 1000 rounds is -134.343.

Figure 5.6: Optimal policy for Q-learning

We can see the different policies. The best policy we trained is using the Monte Carlo on-policy
algorithm, with an highest average payout, although it is still negative. The fact that we get
negative payouts means that, even with an optimal policy to follow, our payout for playing
Blackjack will be negative, suggesting that this game should not be played.

Also, none of the policies matches the policy of the basic strategy nor the policy in Figure 5.7,
showed in [1] using just Monte Carlo exploring starts. Only on-policy first visit MC shows some
similarities1. This means, although mostly similar, our models suggest different ways to behave
in certain cases.

Full code is available in Appendix A.

1To compare the basic staregy with our policies we must just focus on the not usable ace case.

65

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Figure 5.7: Optimal policy and state-value function found by Monte Carlo ES

66

What would life be if we had no courage to attempt
anything new?

Vincent Van Gogh

6
Deep Q-Networks

For this chapter, the basic concepts have been reviewed using the book [23], adjusting the
notation to our previous work. As we mentioned in the previous chapter, vanilla Q-learning
(Tabular Q-learning) is not practical when we have a high amount of states and actions, but RL
still can be used to solve large problems, e.g. Backgammon (1020 states), Go (10170 states) or
helicopter driving (continuous state space).

Recapping, q∗(s, a) is the expected utility starting in s, taking action a and thereafter acting
optimally. We could understand q∗ using the Bellman optimality equation1:

q∗(s, a) =
∑
s′

p
(
s′ | s, a

) [
r
(
s, a, s′

)
+ γmax

a′
q∗
(
s′, a′

)]

Using Q-Value iteration expressed as2:

Qk+1(s, a) =
∑
s′

p
(
s′ | s, a

) [
r
(
s, a, s′

)
+ γmax

a′
Qk(s′, a′)

]

The scheme of vanilla Q-learning is the following:

• For an state-action pair (s, a) receive s′ ∼ p(s′ | s, a).
• Consider your old estimate Qk(s, a).
• Consider your new sample estimate:

target
(
s′
)

= r
(
s, a, s′

)
+ γmax

a′
Qk
(
s′a′

)
• Incorporate the new state in to a running average:

Qk+1(s, a) = (1− α)Qk(s, a) + α[target
(
s′
)]

1Note we will be using state-transition probabilities and expected rewards for state action-next-state, which
were also introduce in Chapter 2, and arises similar formulas.

2We can rewrite this as an expectation as follows Qk+1(s, a) = Es′∼p(s′|s,a) [r(s, a, s′) + γmaxa′ Qk (s′, a′)
]

67

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Algorithm 6.0.1 Vanilla or tabular Q-learning

Start with Q0(s, a) for all s, a
Get initial state s
for k = 1, . . ., till convergence do

sample action a, get next state s′
if s′ is terminal then

target = r(s, a′, s′)
sample new initial state s′

else
target = r(s, a′, s′) + γmaxa′ Qk(s′, a′)

end
Qk+1 ← (1− α)Qk(s, a) + α[target]
s← s′

end

6.1 Approximate Q-learning
Now, instead of a table, we will have a parametrized function:

v̂(s, θ) or v̂θ(s) ≈ vπ(s)
q̂(s, a, θ) or q̂θ(s, a) ≈ qπ(s, a)

For q̂ we got two possibilities:

• Use state-action pairs as input and returning just a q value.
• Use only states as inputs and returning a q value for each action.

s −→
a −→

s −→

−→ q̂(s, a, θ)

−→ q̂(s, a1, θ)

−→ q̂(s, a2, θ)

−→ q̂(s, am, θ)
...Θ

Θ

There are a lot of possible function approximators, but we want to consider differentiable
approximators. Furthermore, we require a training method that is suitable for non-stationary,
non-iid data:

• Linear combination of features (qθ(s, a) = θ0f0(s, a) + . . .+ θnfn(s, a)).
• Artificial Neural Network.

68

Deep Reinforcement Learning Alberto Torrejón Valenzuela

6.2 Stochastic gradient descent
Let review gradient descent methods, already introduced in chapter 2, and explain in detail the
Stochastic Gradient Descent. Let J(θ) he a differentiable function of parameter vector θ. We
then define the gradient of J(θ) to be:

∇θJ(θ) =

∂J(θ)
∂θ1...
∂J(θ)
∂θn

This vector indicates the direction of deepest descent, in order to find a local minimum of J(θ)

we follow the next instructions:

∆θ = θk+1 − θk = −1
2α∇θJ(θ)

where α is some step size parameter.

In our case we have training data stored in batches and our goal is to find parameter vector
θ minimizing mean-squared error between approximate value function V̂ (s, θ) and true value
function vπ(s):

J(θ) = Eπ
[(
vπ(s)− v̂(s, θ))2

]
The standard gradient descent algorithm updates the parameters θ of the objective J(θ) as

θ = θ − α∇θE[J(θ)]

where the expectation in the above equation is approximated by evaluating the cost and
gradient over the full training set. Stochastic gradient descent (SGD) simply does away with
the expectation in the update and computes the gradient of the parameters using only a single
or a few training examples. The new update is then given by,

θ = θ − α∇θJ
(
θ;x(i), y(i)

)
with a pair

(
x(i), y(i)

)
of samples from the training set (mini-batch). In our case,

∆θ = α (vπ(s)− v̂(s, θ))∇θv̂(s, θ)

Here we assume the true value function vπ(s) is given by the supervisor, but in RL there is no
supervisor, only rewards (difference between SL and RL). In practice, we substitute a target for

7→ for MC the target is the return Gt:

∆θ = α (Gt − v̂ (St, θ))∇θv̂ (St, θ)

7→ For TD the target is the TD target Rt+1 + γv̂ (St+1, θ):

∆θ = α(Rt+1 + γv̂(St+1, θ)− v̂(St, θ)∇θv̂(St, θ)

69

Deep Reinforcement Learning Alberto Torrejón Valenzuela

� Example 6.1 — Linear value function approximation.

The common way to represent a state is through feature vectors.

x(s) =

 x1(s)
...

xn(s)

These features are explanatory variables relating to the state (or state and action) and

need to be sufficient to explain the value of that state. In RL literature, there is often no
differencee between “state representation” or “features”, although you might need to process
the state representation using feature engineering into suitable features to apply SL methods.
For example, for the cart-pole example, we can have 4 features:

• Cart position.
• Cart velocity.
• Pole angle.
• Pole velocity at tip.

We can represent then value function by linear combination of features:

v̂(s, θ) = x(s)tθ =
n∑
j=1

xj(s)θj

Our objective function is then quadratic in parameters θ.

J(θ) = Eπ

[(
vπ(S)− x(s)tθ

)2
]

Stochastic descent converges to a global optimum and the update rule is particularly simplea:

∇θv̂(s, θ) = x(s)
⇒ ∆θ = α (vπ(s)− v̂(s, θ))x(s)

�

aupdate = step-site × prediction error × feature value.

The same results can be applied for action-value function q̂(s, a, θ). Here the update rule can
be written as follows:

θk+1 ← θk −
α

2∇θ
[(
q̂(s, a, θ)− target

(
s′
))2]

where target(s′) = r(s, a, s′) + γmaxa′ q(s′, a′, θ) for Q-learning, and has different expressions
for ML, TD or SARSA.

Operating we also get the following simplified expression:

∆θ ← α
(
target

(
s′
)
− q̂(s, a, θ))∇θ q̂(s, a, θ)

70

Deep Reinforcement Learning Alberto Torrejón Valenzuela

We now spot the connection between tabular Q-learning and approximation function. Suppose
we have θ ∈ R|S|×|A| and qθ(s, a) ≡ θSa then

Vθsa

[1
2
(
qθ(s, a)− target

(
s′
))2] =

= ∇θsa
[1

2
(
θSa − target

(
s′
))2] =

= θsa − target
(
s′
)

When plugging this expression into the learning rule we get an expression similar to the one
we get for tabular Q-learming:

θsa ← θsa − α (θsa − target (s′) =
= (1− α)θsa + α target (s′)

(=⇒ Qk+1(s, a)← (1− α)Qk(s, a) + α
[
target

(
s′
)
])

Although gradient descent is simple and appealing, it is not sample efficient, we do not use all
the maximum information on the data, given the agent’s experience (“training data”).

6.3 Batch learning
Batch methods seek to find the best fitting value function. In this methods we use the previous
experience stored in an element D consisting on 〈state, value〉 pairs:

D = {〈s1, v
π
1 〉 , 〈s2, v

π
2 〉, · · · , 〈ST , vπT 〉}

Each batch is then a succession of states, actions and rewards:

s1
1, a

1
1, r

1
2, . . . , s

1
T1...

sK1 , a
K
1 , r

K
2 , . . . , s

K
TK

So, given value function approximation v̂(s, θ) ≈ vπ(s), which parameters θ gives the best
fitting value function v̂(s, θ)? Least squares algorithm find parameter vector θ minimizing
sum-squared error between v̂ (St, θ) and target values vπt .

LS(θ) =
T∑
t=1

(vπt − v̂ (St, θ))2 = ED
[
(vπ − v̂(s, θ))2

]
It turns out that, given experience D, if we follow the batch method:

Repeat:
(1) Sample state, value from experience
(2) Apply stochastic gradient descent update

∆θ = α (vπ − v̂(S, θ))∇θv̂(s, θ)

71

Deep Reinforcement Learning Alberto Torrejón Valenzuela

It converges to the LS solution:

θπ = arg min
θ
LS(θ)

6.4 Deep Q-Learning
Now we are ready to present the Deep Q-learning algorithm (DQL), that is the algorithm behind
the Deep Q-Networks (DQN), which have successfully being applied to play Atari games learning
of values Q(s, a) from pixels s. DQL is an approximation Q-learning algorithm that uses an
Artificial Neural Network as a approximator function.

Figure 6.1: Deep Q-learning diagram

The idea is to make Q-learning look like supervised learning. DQL also uses memory replay
and fixed Q-targets:

• Memory replay. The NN is not updated immediately after every step. Instead, it stores
each experience in batches and the updates are then made on a set of batches randomly
selected from the replay memory. The batches can be of different time steps.

• Separated target networks. Using the same network for both computing the predicted
value and estimating the target value used in the loss function can lead to important
instabilities. The solution for this problem can be training two separate networks with the
same architecture.

DQN algorithm idea

• Take action At according to ε-greedy policy.
• Store transition (St, At, Rt+1, St+1) in replay memory D.
• Sample random mini-batch of transitions

(
s, a, r, s

′
)
from D.

• Compute Q-learning targets w.r.t. old fixed parameters (θ−).
• Optimize MSE between Q-network and Q-learning targets using stochastic gradient descent.

Li(θi) = Es,a,r,s′∼Di [(r + γmax
a′

Q
(
s′, a′; θi

)
−Q(s, a; θi))2]

• Every C steps, the weights from main network are copied to the target network.

72

Deep Reinforcement Learning Alberto Torrejón Valenzuela

input

Q′ target network Q prediction networkparameter
updated

at every C steps

loss =
(
r + γmax

a′
Q
(
s′, a′; θ−i

)
−Q(s, a; θi)

)2

Figure 6.2: Two networks diagram Deep Q-Learning

Algorithm 6.4.1 Deep Q-learning

Initialize network Q
Initialize target network Q̂
Initialize experience replay memory D
while not convergence do

/* Sample phase
Choose an action a from state s using policy ε− greedy(Q)
Agent takes action a, observe reward r, and next state s′
Store transition (s, a, r, s′, terminal) in the experience replay memory D
if enough experiences then

/* Learn phase Sample a random mini-batch of N transitions from D
for every transition (si, ai, ri, s′i) in mini-batch do

if terminali then
yi = ri

else
yi = ri + γmaxa′∈A Q̂ (s′i, a′)

end
end

end
Calculate the loss L = 1/N

∑N−1
i=0 (Q (si, ai)− yi)2

Update Q using the SGD algorithm by minimizing the loss L
Every C steps, copy weights from Q to Q̂.

end

DQN details and possible improvements

1) Having the right model parameter update frequency is important. If you update model
weights too often (e.g. after every step) the algorithm will learn very slowly when not much
has changed. In practice, every 3 or 4 time steps.

2) Setting the correct frequency to copy weights from the main network to the target network
also helpful. We must be careful establishing the value because episodes can have different
numbers of steps.

73

Deep Reinforcement Learning Alberto Torrejón Valenzuela

3) Using Huber loss function has been proven to boost the learning in certain cases, mainly
because Huber weights outliers less.

Lδ(a) =
{

1
2a

2 for|a| < δ
δ(|a| − 1

2δ |) otherwise

where the variable a often refers to the residuals, the difference between the observed and
predicted values.

4) Also important to choose the right initialization of the network: He, Xavier, . . .

DQN in ATARI

The Deep Q-Networks has been successfully applied to play Atari 2600 games, reaching a
human level expertise.

As explained in [5], Atari frames are 210 × 160 pixel images with a 128 color palette. Thus
it is necessary to apply a basic preprocessing step aimed at reducing the input dimensionality.
The raw frames are preprocessed by first converting their RGB representation to gray-scale and
down-sampling it to a 110×84 image. The final input representation is obtained by cropping an
84 × 84 region of the image that roughly captures the playing area.

Once the images are preprocessed, the model is a convolutional neural network, trained with a
variant of Q-learning, whose input is raw pixels and whose output is a value function estimating
future rewards; input state s is stack of raw pixels from last 4 frames and the output is Q(s, a)
for 18 joystick/button positions. Rewarding is the change in score for that step. Here we show
the network architecture used across all the games.

Figure 6.3: Network Architecture used to play Atari games

In the article they compare the performance between random selection, Sarsa, DQN and
human players for some games computing average total reward by running an ε-greedy policy
with ε = 0.05 for a fixed number of steps.

B. Rider Breakout Enduro Pong Q*bert Seaquest Space Invaders
Random 354 1.2 0 -20.4 157 110 179
SARSA 996 5.2 129 -19 614 665 271
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690

Table 6.1: Total average reward for various learning methods when playing Atari games.

74

The way positive reinforcement is carried out
is more important than the amount.

B. F. Skinner

7
Example: Deep Q-Networks and Gridworld

This example is from [24]. The code is programmed in Python using the deep learning framework
PyTorch. Other resources as the Gridworld module to visualize states and actions in a grid were
uploaded by the authors to a Github repository.

The Gridworld we are solving here is similar to the one in Example 4.1, but adding a
few barriers that complicates the process of learning. Again, the set of possible actions is
A = {up, down, left, right}. The point of the game is to get the player to the goal, where the
player will receive a positive reward. The player must not only reach the goal but to do so
following the shortest path. This is a simple Gridworld game setup. The agent (P) must navigate
along the shortest path to the goal (+) and avoid falling into the pit (−). There is a wall (W)
the agent can not pass through. The starting position of the agent is given.

Figure 7.1: Example of Gridworld

Which can be implemented in the code as an array:

[['P', ' ', ' ', ' '],
[' ', 'W', ' ', ' '],
['-', ' ', ' ', ' '],
[' ', ' ', '+', ' ']]

The agent is given a reward of -1 in each step while he does not get to the goal. Falling into
the pit is rewarded with -10 and reaching the goal with 10. All the agent has access to is the
grid and the position of the elements on it.

75

Deep Reinforcement Learning Alberto Torrejón Valenzuela

7.1 Representing the states
The states are represented by a 4× 4× 4 tensor. The 4× 4 are the grid dimensions (width of 4
cells and height of 4 cells). There are 4 different elements located in the grid the agent, the goal,
the wall and the pit. For each of this elements we have 4× 4 matrix of zeros and only one 1 in
the place where the element is located. At the end, we have 4 matrices of dimensions 4× 4 of
zeros and ones.

Figure 7.2: Grid elements representation for Gridworld example

7.2 Building the network
Because of the simplicity of the example we do not need to build a complex neural network. For
the input layer we need a total of 43 = 64 elements ({0, 1}64). We add two hidden layers with
widths of 100 and 150, where we use the ReLu activation function. Finally, given a state we
must return a value for each possible action in that state, so the output layer will produce 4
dimensional vectors. The loss function to minimize is the mean square error as we have already
explain in the previous chapter.

Figure 7.3: Network arquitecture for Gridworld example

As most of the matrix values are zeros, we might found some problems because the ReLu
activation function is technically non-differentiable at 0. To deal with this problems we add a bit
of noise so that none of the values in the state array are exactly 0. This might also help with
overfitting, which is when a model learns by memorizing spurious details in the data without
learning the abstract features of the data, ultimately preventing it from generalizing to new data.

76

Deep Reinforcement Learning Alberto Torrejón Valenzuela

l1 = 64
l2 = 150
l3 = 100
l4 = 4

model = torch.nn.Sequential(
torch.nn.Linear(l1, l2),
torch.nn.ReLU(),
torch.nn.Linear(l2, l3),
torch.nn.ReLU(),
torch.nn.Linear(l3,l4)

)
loss_fn = torch.nn.MSELoss()
learning_rate = 1e-3
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

For the ε-greedy policies, we initialize ε to a large value and we decrease it while the training.
Other two parameters we need to tune are the step size and the discount factor.

7.3 Results

We build the same Deep Q-Network as in chapter 5, the DQN model with experience replay and
adding a target network, but in order two show the improvements of adding such techniques, we
build three different DQN versions:

• Version 1: Without experience replay, nor target network.
• Version 2: With experience replay but without target network.
• Version 3: With both experience replay and target network.

Also, the game can be played in two modes:

• Static mode: the items are placed in the same location for each episode.
• Random mode: the items are placed randomly for each different episode.

For each epoch, we start a new game. We then compute the loss function over the epochs to
compare each version for each mode. For the static mode we get the 100% of victories and the
losses decays as the number of epochs increases. Here we show the losses for the 3rd version.

Figure 7.4: Loss plot for static mode and version 3 of the DQN

77

Deep Reinforcement Learning Alberto Torrejón Valenzuela

The loss plot is pretty noisy, but the moving average of the plot is significantly trending toward
zero. This gives us some confidence the training worked, let test our model for a static game and
see if it converges:

Initial State:
[['+' '-' ' ' 'P']
[' ' 'W' ' ' ' ']
[' ' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 0; Taking action: l
[['+' '-' 'P' ' ']
[' ' 'W' ' ' ' ']
[' ' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 1; Taking action: d
[['+' '-' ' ' ' ']
[' ' 'W' 'P' ' ']
[' ' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 2; Taking action: d
[['+' '-' ' ' ' ']
[' ' 'W' ' ' ' ']
[' ' ' ' 'P' ' ']
[' ' ' ' ' ' ' ']]

Move # 3; Taking action: l
[['+' '-' ' ' ' ']
[' ' 'W' ' ' ' ']
[' ' 'P' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 4; Taking action: l
[['+' '-' ' ' ' ']
[' ' 'W' ' ' ' ']
['P' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 5; Taking action: u
[['+' '-' ' ' ' ']
['P' 'W' ' ' ' ']
[' ' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Move # 6; Taking action: u
[['+' '-' ' ' ' ']
[' ' 'W' ' ' ' ']
[' ' ' ' ' ' ' ']
[' ' ' ' ' ' ' ']]

Game won! Reward: 10

78

Deep Reinforcement Learning Alberto Torrejón Valenzuela

The most interesting case is when items are placed randomly after each episode. Here we
present the losses over the number of epochs and the percentage of victories for each version of
the DQN:

• Version 1

Figure 7.5: Loss plot for random mode and version 1 of the DQN

Games played: 1000, # of wins: 843
Win percentage: 84.3%

• Version 2

Figure 7.6: Loss plot for random mode and version 2 of the DQN

Games played: 1000, # of wins: 942
Win percentage: 94.19%

79

Deep Reinforcement Learning Alberto Torrejón Valenzuela

• Version 3

Figure 7.7: Loss plot for random mode and version 3 of the DQN

Games played: 1000, # of wins: 908
Win percentage: 90.8%

We notice that the simplest version of DQN do not perform well in the random case, the total
winning percentage is 84.3%. This is mainly due to catastrophic forgetting, when two game states
are very similar and yet lead to very different outcomes, the Q function will get confused and will
not be able to learn what to do. This is actually a very important issue associated with gradient
descent-based training methods in online training. Online training is what we’ve been doing: we
backpropagate after each move as we play the game. To avoid catastrophic forgetting we use
learning using experience replay, which clearly arises improvements with a winning percentage of
94.19%. Finally, when using a target network, a copy of the main DQN that we use to stabilize
the update rule for training the main DQN, we get a lower winning percentage, 90.8%, and has
noticeable spikes of error that coincide when the target synchronizes with the main DQN. This
might suggest that for this basic example, using experience replay is well enough.

Full code is available in Appendix B.

80

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Conclusions and improvements
The objective of this project was none other than to introduce the student to the leading field of
deep reinforcement learning. The idea of the project was to build from scratch the theoretical
basis necessary for the subsequent understanding of what are known as Deep Q-Networks, and
apply it to simple cases that show the potential of these techniques.

For this, in the first chapters we introduced deep learning, reviewing the convolutional neural
network model that is used to extract the necessary inputs to feed Deep Q-Networks, and the
basic concepts of reinforcement learning. The starting point of reinforcement learning is the
agent-environment interaction that arises naturally when they meet. To formalize it, we use finite
Markov processes, which is the problem we intend to solve with the algorithms that are reviewed
below: dynamic programming, Monte Carlo methods and TD-learning. Basically, these methods
seek to find an optimal way of behaving for the agent when facing his environment, a policy.
We were able to verify that in dynamic programming, we end up posing a system of equations
that do not always have a solution, or whose solution is difficult to calculate. That is why we
need models that provide a different approach to the exact one and that maintain convergence
properties towards an optimal policy and value function. The application of Monte Carlo and
TD-learning methods are reviewed for this purpose. These techniques are an improvement in
that you do not need a transition model to learn when implementing them. In addition, they
allow computing to be done in a lighter way, becoming able to be implemented, as discussed in
some cases, in real time. A distinction is made between prediction, evaluating how good a state
is, and control, optimizing behavior. Mainly, for this, the following algorithms were reviewed,
and versions under certain hypotheses, providing the pseudocode for most of them:

• Every visit Monte Carlo
• First visit Monte Carlo
• On-policy control Monte Carlo
• Off-policy control Monte Carlo
• TD(0)
• SARSA (on-policy TD-learning)
• Q-learning (off-policy TD-learning)

The performance of the algorithms can vary when faced with the same environment, as was
seen in the BlackJack example. However, it is the last of them, Q-learning, which was of most
interest to us, since it is the basis of the Deep Q-Networks reviewed in the last chapter. Deep
Q-Networks arise from the need to deal with problems with a large set of states and actions and
from the intention of implementing reinforcement learning in real time. In order to effectively
attack these types of problems, Deep Q-Networks use experience or memory replay and learning
with two networks of the same architecture. As an example they discussed how these techniques
were applied by the DeepMind team in Atari games and an example about a Gridworld.

Therefore, it can be considered that the objective that was set for the project has been achieved,
and even exceeded. However, everything is subject to possible improvements and this project
was not going to be different. Despite the extension of the project, mainly due to the fact that it
has been tried to be meticulous following the steps to build a solid base, there are many other
algorithms such as TD(λ), n-step bootsrapping and especially solution methods. approximate
that could not be reviewed. It would also have been interesting to refer to how to face the
exploration versus exploitation dilemma and the correct way of planning to apply these methods.
On the other hand, Deep Q-Networks are the most basic model, more complex structures such
as Double Deep Q Networks or Dueling Deep Q Networks could have been revised. Finally, it
would be good to have given another approach to the problem by applying Game Theory models
or reviewing a totally different perspective such as that proposed by Sergio Hernández Cerezo
and Guillem Duran Ballester in their recent Fractal AI theory (see [25]).

81

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Appendix A

Python code for BlackJack example
import gym
from gym import envs
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from matplotlib import cm
from collections import defaultdict
from IPython.display import clear_output
%matplotlib inline
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.mplot3d import Axes3D

def calc_payoffs(env,rounds,players,pol):
""" Average payoff """
average_payouts = []
for player in range(players):

rd = 1
total_payout = 0
while rd <= rounds:

action = np.argmax(pol(env._get_obs()))
obs, payout, is_done, _ = env.step(action)
if is_done:

total_payout += payout
env.reset()
rd += 1

average_payouts.append(total_payout)
print ("Average payout after {} rounds is {}"

.format(rounds, sum(average_payouts)/players))

def plot_policy(policy):
def get_Z(player_hand, dealer_showing, usable_ace):

if (player_hand, dealer_showing, usable_ace) in policy:
return policy[player_hand, dealer_showing, usable_ace]

else:
return 1

def get_figure(usable_ace, ax):
x_range = np.arange(1, 11)
y_range = np.arange(11, 22)
X, Y = np.meshgrid(x_range, y_range)
Z = np.array([[get_Z(player_hand, dealer_showing, usable_ace)

for dealer_showing in x_range]
for player_hand in range(21, 10, -1)])

surf = ax.imshow(Z, cmap=plt.cm.RdYlGn, vmin=0, vmax=1,
extent=[0.5, 10.5, 10.5, 21.5])

83

Deep Reinforcement Learning Alberto Torrejón Valenzuela

plt.xticks(x_range, ('A', '2', '3', '4', '5', '6', '7', '8', '9', '10'))
plt.yticks(y_range)
ax.set_xlabel('Dealer Showing')
ax.set_ylabel('Player Hand')
ax.grid(color='w', linestyle='-', linewidth=1)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(surf, ticks=[0, 1], cax=cax)
cbar.ax.set_yticklabels(['0 (STICK)','1 (HIT)'])
cbar.ax.invert_yaxis()

fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(121)
ax.set_title('Usable Ace', fontsize=16)
get_figure(True, ax)
ax = fig.add_subplot(122)
ax.set_title('No Usable Ace', fontsize=16)
get_figure(False, ax)
plt.show()

Monte Carlo

On-policy

def create_epsilon_greedy_action_policy(env,Q,epsilon):
def policy(obs):

P = np.ones(env.action_space.n, dtype=float) * epsilon / env.action_space.n
best_action = np.argmax(Q[obs]) #get best action
P[best_action] = 1 - epsilon + (epsilon / env.action_space.n)
return P

return policy

def On_pol_mc_control_learn(env, episodes, discount_factor, epsilon):

returns_sum = defaultdict(float)
returns_count = defaultdict(float)
Q = defaultdict(lambda: np.zeros(env.action_space.n))
pol = create_epsilon_greedy_action_policy(env,Q,epsilon)

for i in range(1, episodes + 1):
if i% 1000 == 0:

print("\rEpisode {}/{}.".format(i, episodes), end="")
clear_output(wait=True)

Generate an episode.
episode = []
state = env.reset()
for t in range(100):

probs = pol(state)
action = np.random.choice(np.arange(len(probs)), p=probs)
next_state, reward, done, _ = env.step(action)

84

Deep Reinforcement Learning Alberto Torrejón Valenzuela

episode.append((state, action, reward))
if done:

break
state = next_state

sa_in_episode = set([(tuple(x[0]), x[1]) for x in episode])
for state, action in sa_in_episode:

sa_pair = (state, action)
#First Visit MC
first_occurence_idx = next(i for i,x in enumerate(episode)

if x[0] == state and x[1] == action)
Sum up all rewards since the first occurance
G = sum([x[2]*(discount_factor**i)

for i,x in enumerate(episode[first_occurence_idx:])])
Calculate average return for this state over all sampled episodes
returns_sum[sa_pair] += G
returns_count[sa_pair] += 1.0
Q[state][action] = returns_sum[sa_pair] / returns_count[sa_pair]

return Q, pol

env = gym.make('Blackjack-v0')

env.reset()
Q_on_pol,On_MC_Learned_Policy = On_pol_mc_control_learn(env, 500000, 0.9, 0.05)

env.reset()
calc_payoffs(env,1000,1000,On_MC_Learned_Policy)

on_pol = {key: np.argmax(On_MC_Learned_Policy(key)) for key in Q_on_pol.keys()}
plot_policy(on_pol)

Off-policy

def create_random_policy(nA):
A = np.ones(nA, dtype=float) / nA
def policy_fn(obs):

return A
return policy_fn

def create_greedy_action_policy(env,Q):
def policy(obs):

P = np.zeros_like(Q[obs], dtype=float)
best_action = np.argmax(Q[obs])
P[best_action] = 1
return P

return policy

def Off_pol_mc_control_learn(env, num_episodes, policy, discount_factor):

Q = defaultdict(lambda: np.zeros(env.action_space.n))

85

Deep Reinforcement Learning Alberto Torrejón Valenzuela

C = defaultdict(lambda: np.zeros(env.action_space.n))
target_policy = create_greedy_action_policy(env,Q)

for i_episode in range(1, num_episodes + 1):
if i_episode % 1000 == 0:

print("\rEpisode {}/{}.".format(i_episode, num_episodes), end="")
clear_output(wait=True)

Generate an episode
episode = []
state = env.reset()
for t in range(100):

Sample an action from our policy
probs = target_policy(state)
action = np.random.choice(np.arange(len(probs)), p=probs)
next_state, reward, done, _ = env.step(action)
episode.append((state, action, reward))
if done:

break
state = next_state

G = 0.0 # Sum of discounted returns
W = 1.0 # Importance sampling ratio

For each step in the episode, backwards
for t in range(len(episode))[::-1]:

state, action, reward = episode[t]
Update the total reward since step t
G = discount_factor * G + reward
Update weighted importance sampling formula denominator
C[state][action] += W
Update the action-value function using the incremental update formula
This also improves our target policy which holds a reference to Q
Q[state][action] += (W / C[state][action]) * (G - Q[state][action])
If the action taken by the policy is not the action
taken by the target policy the probability will be 0 and we can break
if action != np.argmax(target_policy(state)):

break
W = W * 1./policy(state)[action]

return Q, target_policy

env = gym.make('Blackjack-v0')
env.reset()
rand = create_random_policy(env.action_space.n)
Q_off_Pol,off_MC_Learned_Policy = Off_pol_mc_control_learn(env, 500000, rand,0.9)

env.reset()
calc_payoffs(env,1000,1000,off_MC_Learned_Policy)

pol_test = {key: np.argmax(off_MC_Learned_Policy(key)) for key in Q_off_Pol.keys()}

86

Deep Reinforcement Learning Alberto Torrejón Valenzuela

plot_policy(pol_test)

TD Learning

SARSA

def create_epsilon_greedy_action_policy(env,Q,epsilon):
def policy(obs):

P = np.ones(env.action_space.n, dtype=float) * epsilon / env.action_space.n
best_action = np.argmax(Q[obs])
P[best_action] = 1 - epsilon + (epsilon / env.action_space.n)
return P

return policy

def SARSA(env, episodes, epsilon, alpha, gamma):

Q = defaultdict(lambda: np.zeros(env.action_space.n))
pol = create_epsilon_greedy_action_policy(env,Q,epsilon)

for i in range(1, episodes + 1):
if i% 1000 == 0:

print("\rEpisode {}/{}.".format(i, episodes), end="")
clear_output(wait=True)

curr_state = env.reset()
probs = pol(curr_state)
curr_act = np.random.choice(np.arange(len(probs)), p=probs)
while True:

next_state,reward,done,_ = env.step(curr_act)
next_probs = create_epsilon_greedy_action_policy(env,Q,epsilon)(next_state)
next_act = np.random.choice(np.arange(len(next_probs)),p=next_probs)
td_target = reward + gamma * Q[next_state][curr_act]
td_error = td_target - Q[curr_state][curr_act]
Q[curr_state][curr_act] = Q[curr_state][curr_act] + alpha * td_error
if done:

break
curr_state = next_state
curr_act = next_act

return Q, pol

env = gym.make('Blackjack-v0')
env.reset()
Q_SARSA,SARSA_Policy = SARSA(env, 500000, 0.1, 0.1,0.95)

env.reset()
calc_payoffs(env,1000,1000,SARSA_Policy)

pol_sarsa = {key: np.argmax(SARSA_Policy(key)) for key in Q_SARSA.keys()}
print("SARSA Learning Policy")
plot_policy(pol_sarsa)

87

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Q-learning

def off_pol_TD_Q_learn(env, episodes, epsilon, alpha, gamma):

Q = defaultdict(lambda: np.zeros(env.action_space.n))
pol = create_epsilon_greedy_action_policy(env,Q,epsilon)

for i in range(1, episodes + 1):
if i% 1000 == 0:

print("\rEpisode {}/{}.".format(i, episodes), end="")
clear_output(wait=True)

curr_state = env.reset()
while True:

probs = pol(curr_state)
curr_act = np.random.choice(np.arange(len(probs)), p=probs)
next_state,reward,done,_ = env.step(curr_act)
next_act = np.argmax(Q[next_state])
td_target = reward + gamma * Q[next_state][next_act]
td_error = td_target - Q[curr_state][curr_act]
Q[curr_state][curr_act] = Q[curr_state][curr_act] + alpha * td_error
if done:

break
curr_state = next_state

return Q, pol

env = gym.make('Blackjack-v0')
env.reset()
Q_QLearn,QLearn_Policy = off_pol_TD_Q_learn(env, 500000, 0.1, 0.1,0.95)

env.reset()
calc_payoffs(env,1000,1000,QLearn_Policy)

pol_QLearn = {key: np.argmax(QLearn_Policy(key)) for key in Q_QLearn.keys()}
print("Off-Policy Q Learning Policy")
plot_policy(pol_QLearn)

Based on the publication of Ang Peng Seng: Blackjack Strategy using Reinforcement Learning

88

https://www.kaggle.com/angps95/blackjack-strategy-using-reinforcement-learning

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Appendix B

Python code for Gridworld example
import numpy as np
import torch
from Gridworld import Gridworld
from IPython.display import clear_output
import random
from matplotlib import pylab as plt
from collections import deque

l1 = 64
l2 = 150
l3 = 100
l4 = 4

model = torch.nn.Sequential(
torch.nn.Linear(l1, l2),
torch.nn.ReLU(),
torch.nn.Linear(l2, l3),
torch.nn.ReLU(),
torch.nn.Linear(l3,l4)

)
loss_fn = torch.nn.MSELoss()
learning_rate = 1e-3
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

gamma = 0.9
epsilon = 1.0

action_set = {
0: 'u',
1: 'd',
2: 'l',
3: 'r',

}

def test_model(model, mode='random', display=True):
i = 0
test_game = Gridworld(mode=mode)
state_ = test_game.board.render_np().reshape(1,64) + np.random.rand(1,64)/10.0
state = torch.from_numpy(state_).float()
if display:

print("Initial State:")
print(test_game.display())

status = 1
while(status == 1):

qval = model(state)
qval_ = qval.data.numpy()

89

Deep Reinforcement Learning Alberto Torrejón Valenzuela

action_ = np.argmax(qval_)
action = action_set[action_]
if display:

print('Move # %s; Taking action: %s' % (i, action))
test_game.makeMove(action)
state_ = test_game.board.render_np().reshape(1,64) + np.random.rand(1,64)/10.0
state = torch.from_numpy(state_).float()
if display:

print(test_game.display())
reward = test_game.reward()
if reward != -1:

if reward > 0:
status = 2
if display:

print("Game won! Reward: %s" % (reward,))
else:

status = 0
if display:

print("Game LOST. Reward: %s" % (reward,))
i += 1
if (i > 15):

if display:
print("Game lost; too many moves.")

break
win = True if status == 2 else False
return win

epochs = 5000
losses = []
for i in range(epochs):

game = Gridworld(size=4, mode='random')
state_ = game.board.render_np().reshape(1,64) + np.random.rand(1,64)/10.0
state1 = torch.from_numpy(state_).float()
status = 1
while(status == 1):

qval = model(state1)
qval_ = qval.data.numpy()
if (random.random() < epsilon):

action_ = np.random.randint(0,4)
else:

action_ = np.argmax(qval_)

action = action_set[action_]
game.makeMove(action)
state2_ = game.board.render_np().reshape(1,64) + np.random.rand(1,64)/10.0
state2 = torch.from_numpy(state2_).float()
reward = game.reward()
with torch.no_grad():

newQ = model(state2.reshape(1,64))
maxQ = torch.max(newQ)
if reward == -1:

90

Deep Reinforcement Learning Alberto Torrejón Valenzuela

Y = reward + (gamma * maxQ)
else:

Y = reward
Y = torch.Tensor([Y]).detach()
X = qval.squeeze()[action_]
loss = loss_fn(X, Y)
optimizer.zero_grad()
loss.backward()
losses.append(loss.item())
optimizer.step()
state1 = state2
if reward != -1:

status = 0
if epsilon > 0.1:

epsilon -= (1/epochs)

plt.figure(figsize=(10,7))
plt.plot(losses)
plt.xlabel("Epochs",fontsize=22)
plt.ylabel("Loss",fontsize=22)

max_games = 1000
wins = 0
for i in range(max_games):

win = test_model(model, mode='random', display=False)
if win:

wins += 1
win_perc = float(wins) / float(max_games)
print("Games played: {0}, # of wins: {1}".format(max_games,wins))
print("Win percentage: {}%".format(100.0*win_perc))

test_model(model, 'random')

epochs = 5000
losses = []
mem_size = 1000
batch_size = 200
replay = deque(maxlen=mem_size)
max_moves = 50
h = 0
for i in range(epochs):

game = Gridworld(size=4, mode='random')
state1_ = game.board.render_np().reshape(1,64)

+ np.random.rand(1,64)/100.0
state1 = torch.from_numpy(state1_).float()
status = 1

91

Deep Reinforcement Learning Alberto Torrejón Valenzuela

mov = 0
while(status == 1):

mov += 1
qval = model(state1)
qval_ = qval.data.numpy()
if (random.random() < epsilon):

action_ = np.random.randint(0,4)
else:

action_ = np.argmax(qval_)

action = action_set[action_]
game.makeMove(action)
state2_ = game.board.render_np().reshape(1,64)

+ np.random.rand(1,64)/100.0
state2 = torch.from_numpy(state2_).float()
reward = game.reward()
done = True if reward > 0 else False
exp = (state1, action_, reward, state2, done)
replay.append(exp)
state1 = state2

if len(replay) > batch_size:
minibatch = random.sample(replay, batch_size)
state1_batch = torch.cat([s1 for (s1,a,r,s2,d) in minibatch])
action_batch = torch.Tensor([a for (s1,a,r,s2,d) in minibatch])
reward_batch = torch.Tensor([r for (s1,a,r,s2,d) in minibatch])
state2_batch = torch.cat([s2 for (s1,a,r,s2,d) in minibatch])
done_batch = torch.Tensor([d for (s1,a,r,s2,d) in minibatch])

Q1 = model(state1_batch)
with torch.no_grad():

Q2 = model(state2_batch)

Y = reward_batch + gamma * ((1 - done_batch) * torch.max(Q2,dim=1)[0])
X = Q1.gather(dim=1,index=action_batch.long().unsqueeze(dim=1)).squeeze()
loss = loss_fn(X, Y.detach())
clear_output(wait=True)
optimizer.zero_grad()
loss.backward()
losses.append(loss.item())
optimizer.step()

if reward != -1 or mov > max_moves:
status = 0
mov = 0

losses = np.array(losses)

plt.figure(figsize=(10,7))
plt.plot(losses)
plt.xlabel("Epochs",fontsize=22)

92

Deep Reinforcement Learning Alberto Torrejón Valenzuela

plt.ylabel("Loss",fontsize=22)

max_games = 1000
wins = 0
for i in range(max_games):

win = test_model(model, mode='random', display=False)
if win:

wins += 1
win_perc = float(wins) / float(max_games)
print("Games played: {0}, # of wins: {1}".format(max_games,wins))
print("Win percentage: {}%".format(100.0*win_perc))

test_model(model, mode='random')

import copy

l1 = 64
l2 = 150
l3 = 100
l4 = 4

model = torch.nn.Sequential(
torch.nn.Linear(l1, l2),
torch.nn.ReLU(),
torch.nn.Linear(l2, l3),
torch.nn.ReLU(),
torch.nn.Linear(l3,l4)

)

model2 = copy.deepcopy(model) #A
model2.load_state_dict(model.state_dict()) #B

loss_fn = torch.nn.MSELoss()
learning_rate = 1e-3
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

gamma = 0.9
epsilon = 0.3

from collections import deque
epochs = 5000
losses = []
mem_size = 1000
batch_size = 200
replay = deque(maxlen=mem_size)
max_moves = 50
h = 0

93

Deep Reinforcement Learning Alberto Torrejón Valenzuela

sync_freq = 500 #A
j=0
for i in range(epochs):

game = Gridworld(size=4, mode='random')
state1_ = game.board.render_np().reshape(1,64) + np.random.rand(1,64)/100.0
state1 = torch.from_numpy(state1_).float()
status = 1
mov = 0
while(status == 1):

j+=1
mov += 1
qval = model(state1)
qval_ = qval.data.numpy()
if (random.random() < epsilon):

action_ = np.random.randint(0,4)
else:

action_ = np.argmax(qval_)

action = action_set[action_]
game.makeMove(action)
state2_ = game.board.render_np().reshape(1,64) + np.random.rand(1,64)/100.0
state2 = torch.from_numpy(state2_).float()
reward = game.reward()
done = True if reward > 0 else False
exp = (state1, action_, reward, state2, done)
replay.append(exp) #H
state1 = state2

if len(replay) > batch_size:
minibatch = random.sample(replay, batch_size)
state1_batch = torch.cat([s1 for (s1,a,r,s2,d) in minibatch])
action_batch = torch.Tensor([a for (s1,a,r,s2,d) in minibatch])
reward_batch = torch.Tensor([r for (s1,a,r,s2,d) in minibatch])
state2_batch = torch.cat([s2 for (s1,a,r,s2,d) in minibatch])
done_batch = torch.Tensor([d for (s1,a,r,s2,d) in minibatch])
Q1 = model(state1_batch)
with torch.no_grad():

Q2 = model2(state2_batch) #B

Y = reward_batch + gamma * ((1-done_batch) * torch.max(Q2,dim=1)[0])
X = Q1.gather(dim=1,index=action_batch.long().unsqueeze(dim=1)).squeeze()
loss = loss_fn(X, Y.detach())
clear_output(wait=True)
optimizer.zero_grad()
loss.backward()
losses.append(loss.item())
optimizer.step()

if j % sync_freq == 0: #C
model2.load_state_dict(model.state_dict())

if reward != -1 or mov > max_moves:

94

Deep Reinforcement Learning Alberto Torrejón Valenzuela

status = 0
mov = 0

losses = np.array(losses)

plt.figure(figsize=(10,7))
plt.plot(losses)
plt.xlabel("Epochs",fontsize=22)
plt.ylabel("Loss",fontsize=22)

max_games = 1000
wins = 0
for i in range(max_games):

win = test_model(model, mode='random', display=False)
if win:

wins += 1
win_perc = float(wins) / float(max_games)
print("Games played: {0}, # of wins: {1}".format(max_games,wins))
print("Win percentage: {}%".format(100.0*win_perc))

The code is from book [24].

95

Deep Reinforcement Learning Alberto Torrejón Valenzuela

References

[1] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT press, 2018.

[2] F. Rosenblatt, Principles of neurodynamics. Perceptrons and the theory of brain mechanisms,
Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[3] C.C. Tappert, Who is the father of deep learning?, (2019) 343–348.

[4] N.N. Schraudolph, P. Dayan, T.J. Sejnowski, Temporal difference learning of position
evaluation in the game of go, Advances in Neural Information Processing Systems. (1994)
817–817.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al., Playing
atari with deep reinforcement learning, arXiv Preprint arXiv:1312.5602. (2013).

[6] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al.,
Mastering the game of go with deep neural networks and tree search, Nature. 529 (2016) 484–489.

[7] N. Brown, T. Sandholm, Superhuman ai for multiplayer poker, Science. 365 (2019) 885–890.

[8] M. Moravcik, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard, et al., Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker, Science. 356 (2017) 508–513.

[9] A.E. Sallab, M. Abdou, E. Perot, S. Yogamani, Deep reinforcement learning framework for
autonomous driving, Electronic Imaging. 2017 (2017) 70–76.

[10] X. Pan, Y. You, Z. Wang, C. Lu, Virtual to real reinforcement learning for autonomous
driving, arXiv Preprint arXiv:1704.03952. (2017).

[11] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates, in: 2017 Ieee International Conference on Robotics and
Automation (Icra), IEEE, 2017: pp. 3389–3396.

[12] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, et al., Deep reinforcement learning with a
natural language action space, arXiv Preprint arXiv:1511.04636. (2015).

[13] Z. Zhang, S. Zohren, S. Roberts, Deep reinforcement learning for trading, The Journal of
Financial Data Science. 2 (2020) 25–40.

[14] Y. Deng, F. Bao, Y. Kong, Z. Ren, Q. Dai, Deep direct reinforcement learning for financial
signal representation and trading, IEEE Transactions on Neural Networks and Learning Systems.
28 (2016) 653–664.

[15] Z. Zhou, X. Li, R.N. Zare, Optimizing chemical reactions with deep reinforcement learning,
ACS Central Science. 3 (2017) 1337–1344.

[16] V. François-Lavet, Contributions to deep reinforcement learning and its applications in
smartgrids, PhD thesis, Universite de Liege, Liege, Belgique, 2017.

[17] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, et al., DRN: A deep
reinforcement learning framework for news recommendation, in: Proceedings of the 2018 World
Wide Web Conference, 2018: pp. 167–176.

[18] A. Torrejón Valenzuela, Teoría de juegos, B.S. thesis, Universidad de Sevilla, 2020.
https://torrejonvalenzuela.com/pdf/TFG.pdf.

[19] Z. Gao, Understanding the future of deep reinforcement learning from the perspective of
game theory, in: Journal of Physics: Conference Series, IOP Publishing, 2020: p. 012076.

97

https://torrejonvalenzuela.com/pdf/TFG.pdf

Deep Reinforcement Learning Alberto Torrejón Valenzuela

[20] G. Tesauro, TD-gammon, a self-teaching backgammon program, achieves master-level
play, Neural Computation. 6 (1994) 215–219.

[21] C. Wang, K. Ross, On the convergence of the monte carlo exploring starts algorithm for
reinforcement learning, arXiv Preprint arXiv:2002.03585. (2020).

[22] C.J.C.H. Watkins, Learning from delayed rewards, (1989).

[23] M. Sewak, Deep reinforcement learning, Springer, 2019.

[24] A. Zai, B. Brown, Deep reinforcement learning in action, Manning Publications, 2020.

[25] S.H. Cerezo, G.D. Ballester, Fractal ai: A fragile theory of intelligence, arXiv Preprint
arXiv:1803.05049. (2018).

[26] P.L. Luque-Calvo, Escribir un trabajo fin de estudios con r markdown, Disponible en
http://destio.us.es/calvo, 2017.

98

http://destio.us.es/calvo

	Dedication
	Index
	Abstract
	Figure index
	Table index

	Introduction
	First name, Reinforcement, last name, Deep
	Motivation
	Project structure

	Introduction to Deep Learning
	Supervised learning, bias and overfitting
	Deep learning approach
	Convolutional Neural Networks

	Introduction to Reinforcement Learning
	Basic concepts
	Markov Decision Process
	Goals
	Policies and value functions
	Bellman equations

	Behaving optimally
	Bellman optimality equations

	Reinforcement Learning solution methods
	Dynamic programming
	Prediction
	Control
	Efficiency of dynamic programming

	Monte Carlo methods
	Prediction
	Control
	Improving Monte Carlo methods
	On-policy methods
	Off-policy methods

	Temporal Difference Learning
	Prediction
	SARSA (on-policy control)
	Q-learning (off-policy control)
	Double Q-learning

	Example: Blackjack
	Prediction
	Control

	Deep Q-Networks
	Approximate Q-learning
	Stochastic gradient descent
	Batch learning
	Deep Q-Learning

	Example: Deep Q-Networks and Gridworld
	Representing the states
	Building the network
	Results
	Conclusions and improvements
	Appendix A
	Appendix B
	References

